Enforcing and Defying Associativity, Commutativity, Totality, and Strong Noninvertibility for One-Way Functions in Complexity Theory

  • Lane A. Hemaspaandra
  • Jörg Rothe
  • Amitabh Saxena
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3701)


Rabi and Sherman [RS97,RS93] proved that the hardness of factoring is a sufficient condition for there to exist one-way functions (i.e., p-time computable, honest, p-time noninvertible functions) that are total, commutative, and associative but not strongly noninvertible. In this paper we improve the sufficient condition to P ≠ NP.

More generally, in this paper we completely characterize which types of one-way functions stand or fall together with (plain) one-way functions—equivalently, stand or fall together with P ≠ NP. We look at the four attributes used in Rabi and Sherman’s seminal work on algebraic properties of one-way functions (see [RS97,RS93]) and subsequent papers—strongness (of noninvertibility), totality, commutativity, and associativity—and for each attribute, we allow it to be required to hold, required to fail, or “don’t care.” In this categorization there are 34 = 81 potential types of one-way functions. We prove that each of these 81 feature-laden types stand or fall together with the existence of (plain) one-way functions.


Computational complexity complexity-theoretic one-way functions associativity commutativity strong noninvertibility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AR88]
    Allender, E., Rubinstein, R.: P-printable sets. SIAM Journal on Computing 17(6), 1193–1202 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  2. [BC93]
    Bovet, D., Crescenzi, P.: Introduction to the Theory of Complexity. Prentice-Hall, Englewood Cliffs (1993)zbMATHGoogle Scholar
  3. [BDG95]
    Balcázar, J., Díaz, J., Gabarró, J.: Structural Complexity I, 2nd edn. EATCS Monographs on Theoretical Computer Science. Springer, Heidelberg (1995)Google Scholar
  4. [Ber77]
    Berman, L.: Polynomial Reducibilities and Complete Sets. PhD thesis, Cornell University, Ithaca (1977)Google Scholar
  5. [BFH78]
    Brassard, G., Fortune, S., Hopcroft, J.: A note on cryptography and NP ∩ coNP − P. Technical Report TR-338, Department of Computer Science, Cornell University, Ithaca (April 1978)Google Scholar
  6. [BHHR99]
    Beygelzimer, A., Hemaspaandra, L., Homan, C., Rothe, J.: One-way functions in worst-case cryptography: Algebraic and security properties are on the house. SIGACT News 30(4), 25–40 (1999)CrossRefGoogle Scholar
  7. [Bra79]
    Brassard, G.: A note on the complexity of cryptography. IEEE Transactions on Information Theory 25(2), 232–233 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  8. [FFNR03]
    Fenner, S., Fortnow, L., Naik, A., Rogers, J.: Inverting onto functions. Information and Computation 186(1), 90–103 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  9. [GS88]
    Grollmann, J., Selman, A.: Complexity measures for public-key cryptosystems. SIAM Journal on Computing 17(2), 309–335 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  10. [HH91]
    Hartmanis, J., Hemachandra, L.: One-way functions and the nonisomorphism of NP-complete sets. Theoretical Computer Science 81(1), 155–163 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  11. [HO02]
    Hemaspaandra, L., Ogihara, M.: The Complexity Theory Companion. EATCS Texts in Theoretical Computer Science. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  12. [Hom04]
    Homan, C.: Tight lower bounds on the ambiguity in strong, total, associative, one-way functions. Journal of Computer and System Sciences 68(3), 657–674 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  13. [HPR01]
    Hemaspaandra, L., Pasanen, K., Rothe, J.: If P ≠ NP then some strongly noninvertible functions are invertible. In: Freivalds, R. (ed.) FCT 2001. LNCS, vol. 2138, pp. 162–171. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. [HR99]
    Hemaspaandra, L., Rothe, J.: Creating strong, total, commutative, associative one-way functions from any one-way function in complexity theory. Journal of Computer and System Sciences 58(3), 648–659 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  15. [HR00]
    Hemaspaandra, L., Rothe, J.: Characterizing the existence of one-way permutations. Theoretical Computer Science 244(1–2), 257–261 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  16. [HRS04]
    Hemaspaandra, L., Rothe, J., Saxena, A.: Enforcing and defying associativity, commutativity, totality, and strong noninvertibility for one-way functions in complexity theory. Technical Report TR-854, Department of Computer Science, University of Rochester, Rochester, NY (December 2004); Revised in, Also appears as ACM Computing Research Repository (CoRR) Technical Report cs.CC/050304 (April 2005)Google Scholar
  17. [HRW97]
    Hemaspaandra, L., Rothe, J., Wechsung, G.: On sets with easy certificates and the existence of one-way permutations. In: Bongiovanni, G., Bovet, D.P., Di Battista, G. (eds.) CIAC 1997. LNCS, vol. 1203, pp. 264–275. Springer, Heidelberg (1997)Google Scholar
  18. [HT03]
    Homan, C., Thakur, M.: One-way permutations and self-witnessing languages. Journal of Computer and System Sciences 67(3), 608–622 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  19. [Kle52]
    Kleene, S.: Introduction to Metamathematics. D. van Nostrand Company, Inc., New York (1952)zbMATHGoogle Scholar
  20. [Ko85]
    Ko, K.: On some natural complete operators. Theoretical Computer Science 37(1), 1–30 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  21. [RH02]
    Rothe, J., Hemaspaandra, L.: On characterizing the existence of partial one-way permutations. Information Processing Letters 82(3), 165–171 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  22. [RS93]
    Rabi, M., Sherman, A.: Associative one-way functions: A new paradigm for secret-key agreement and digital signatures. Technical Report CS-TR-3183/UMIACS-TR-93-124, Department of Computer Science, University of Maryland, College Park, Maryland (1993)Google Scholar
  23. [RS97]
    Rabi, M., Sherman, A.: An observation on associative one-way functions in complexity theory. Information Processing Letters 64(5), 239–244 (1997)CrossRefMathSciNetGoogle Scholar
  24. [Sel92]
    Selman, A.: A survey of one-way functions in complexity theory. Mathematical Systems Theory 25(3), 203–221 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  25. [SS05]
    Saxena, A., Soh, B.: A novel method for authenticating mobile agents with one-way signature chaining. In: Proceedings of the 7th International Symposium on Autonomous Decentralized Systems, pp. 187–193. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  26. [SSZ05]
    Saxena, A., Soh, B., Zantidis, D.: A digital cash protocol based on additive zero knowledge. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3482, pp. 672–680. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  27. [Val76]
    Valiant, L.: The relative complexity of checking and evaluating. Information Processing Letters 5(1), 20–23 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  28. [Wat88]
    Watanabe, O.: On hardness of one-way functions. Information Processing Letters 27(3), 151–157 (1988)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Lane A. Hemaspaandra
    • 1
  • Jörg Rothe
    • 2
  • Amitabh Saxena
    • 3
  1. 1.University of RochesterUSA
  2. 2.Heinrich-Heine-Universität DüsseldorfGermany
  3. 3.La Trobe UniversityAustralia

Personalised recommendations