Generalized Abstract Non-interference: Abstract Secure Information-Flow Analysis for Automata

  • Roberto Giacobazzi
  • Isabella Mastroeni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3685)


Abstract non-interference has been introduced as a weakening non-interference which models attackers as abstract interpretations (i.e., static analyzers) of programming language semantics. In this paper we generalize the notion of abstract non-interference to deal with tree-like models of computation. This allows us to widen the scope of abstract non-interference for modeling security properties in automata, timed automata as models of real-time systems, and concurrent systems. We show that well known definitions of non-interference in these models of computation can be viewed as instances of our generalization. This proves that abstract non-interference can reasonably be considered as a general framework for studying and comparing security properties at different levels of abstraction in both programming languages and systems. Moreover, the most precise harmless attacker of a system is systematically derived by transforming abstract domains, characterizing the security degree of automata and concurrent systems.


Security Policy Security Property Private Action Abstract Interpretation Public Output 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Barbuti, R., De Francesco, N., Santone, A., Tesei, L.: A notion of non-interference for timed automata. Fundamenta Informaticae 51, 1–11 (2002)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Bell, D.E., LaPadula, L.J.: Secure computer systems: Mathematical foundations and model. Technical Report M74-244, MITRE Corp. Badford, MA (1973)Google Scholar
  4. 4.
    Clark, D., Hankin, C., Hunt, S.: Information flow for algol-like languages. Computer Languages 28(1), 3–28 (2002)zbMATHGoogle Scholar
  5. 5.
    Cohen, E.S.: Information transmission in sequential programs. Foundations of Secure Computation, 297–335 (1978)Google Scholar
  6. 6.
    Cousot, P.: Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. Theor. Comput. Sci. 277(1-2), 47–103 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Proc. of Conf. Record of the 4th ACM Symp. on Principles of Programming Languages (POPL 1977), pp. 238–252. ACM Press, New York (1977)Google Scholar
  8. 8.
    Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Proc. of Conf. Record of the 6th ACM Symp. on Principles of Programming Languages (POPL 1979), pp. 269–282. ACM Press, New York (1979)CrossRefGoogle Scholar
  9. 9.
    Denning, D.E., Denning, P.: Certification of programs for secure information flow. Communications of the ACM 20(7), 504–513 (1977)zbMATHCrossRefGoogle Scholar
  10. 10.
    Focardi, R., Gorrieri, R.: A classification of security properties for process algebras. Journal of Computer security 3(1), 5–33 (1995)Google Scholar
  11. 11.
    Focardi, R., Gorrieri, R.: Classification of security properties (part i: Information flow). In: Focardi, R., Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, p. 331. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Focardi, R., Martinelli, F.: A uniform approach for the definition of security properties. World Congress on Formal Methods (1), 794–813 (1999)Google Scholar
  13. 13.
    Focardi, R., Rossi, S., Sabelfeld, A.: Bridging language-based and process calculi security. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 299–315. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Giacobazzi, R., Mastroeni, I.: Abstract non-interference: Parameterizing non-interference by abstract interpretation. In: Proc. of the 31st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2004), pp. 186–197. ACM-Press, NY (2004)CrossRefGoogle Scholar
  15. 15.
    Goguen, J.A., Meseguer, J.: Security policies and security models. In: Proc. IEEE Symp. on Security and Privacy, pp. 11–20. IEEE Computer Society Press, Los Alamitos (1982)Google Scholar
  16. 16.
    Honda, K., Vasconcelos, V.T., Yoshida, N.: Secure information flow as typed process behaviour. In: Smolka, G. (ed.) ESOP 2000. LNCS, vol. 1782, pp. 180–199. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Hunt, S., Mastroeni, I.: The per model of abstract non-interference. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 171–185. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Joshi, R., Leino, K.R.M.: A semantic approach to secure information flow. Science of Computer Programming 37, 113–138 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Laud, P.: Semantics and program analysis of computationally secure information flow. In: Sands, D. (ed.) ESOP 2001. LNCS, vol. 2028, pp. 77–91. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Mantel, H., Sabelfeld, A.: A unifying approach to the security of distributed and multi-threaded programs. Journal of Computer Security 11(4), 615–676 (2003)Google Scholar
  21. 21.
    Milner, R.: Communication and Concurrency. Prentice-Hall, Inc., Englewood Cliffs (1989)zbMATHGoogle Scholar
  22. 22.
    Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. on selected ares in communications 21(1), 5–19 (2003)CrossRefGoogle Scholar
  23. 23.
    Sabelfeld, A., Sands, D.: A PER model of secure information flow in sequential programs. Higher-Order and Symbolic Computation 14(1), 59–91 (2001)zbMATHCrossRefGoogle Scholar
  24. 24.
    Sabelfeld, A., Sands, D.: Dimensions and principles of declassification. In: Proc. of 18th IEEE Computer Security Foundations Workshop (CSFW-18). IEEE Comp. Soc. Press, Los Alamitos (2005)Google Scholar
  25. 25.
    Skalka, C., Smith, S.: Static enforcement of security with types. In: ICFP 2000, pp. 254–267. ACM Press, New York (2000)Google Scholar
  26. 26.
    Volpano, D.: Safety versus secrecy. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS, vol. 1694, pp. 303–311. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  27. 27.
    Volpano, D., Smith, G., Irvine, C.: A sound type system for secure flow analysis. Journal of Computer Security 4(2,3), 167–187 (1996)Google Scholar
  28. 28.
    Zanotti, M.: Security typings by abstract interpretation. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 360–375. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  29. 29.
    Zdancewic, S., Myers, A.C.: Robust declassification. In: Proc. of the IEEE Computer Security Foundations Workshop, pp. 15–23. IEEE Computer Society Press, Los Alamitos (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Roberto Giacobazzi
    • 1
  • Isabella Mastroeni
    • 1
  1. 1.Dipartimento di InformaticaUniversità di VeronaItaly

Personalised recommendations