On the Individuality of the Iris Biometric

  • Sungsoo Yoon
  • Seung-Seok Choi
  • Sung-Hyuk Cha
  • Yillbyung Lee
  • Charles C. Tappert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3656)


Biometric authentication has been considered a model for quantitatively establishing the discriminative power of biometric data. The dichotomy model classifies two biometric samples as coming either from the same person or from two different people. This paper reviews features, distance measures, and classifiers used in iris authentication. For feature extraction we compare simple binary and multi-level 2D wavelet features. For distance measures we examine scalar distances such as Hamming and Euclidean, feature vector and histogram distances. Finally, for the classifiers we compare Bayes decision rule, nearest neighbor, artificial neural network, and support vector machines. Of the eleven different combinations tested, the best one uses multi-level 2D wavelet features, the histogram distance, and a support vector machine classifier.


Biometric individuality Dichotomy model Histogram Iris authentication 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Daugman, J.G.: High confidence visual recognition of persons by a test of statistical inde-pendence. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(11), 1148–1161 (1993)CrossRefGoogle Scholar
  2. 2.
    Cha, S.-H.: Use of Distance Measures in Handwriting Analysis. PhD dissertation, SUNY at buffalo, CSE (March 2001)Google Scholar
  3. 3.
    Srihari, S.N., Cha, S.-H., Arora, H., Lee, S.: Individuality of Handwriting. Journal of Forensic Sciences 47(4), 856–872 (2002)Google Scholar
  4. 4.
    Pankanti, S., Prabhakar, S., Jain, A.K.: On the Individuality of Fingerprints. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(8), 1010–1025 (2002)CrossRefGoogle Scholar
  5. 5.
    Stoney, D., Thornton, J.: A Critical Analysis of Quantitative Fingerprint Individuality Models. Journal of Forensic Sciences 31(4), 1187–1216 (1986)Google Scholar
  6. 6.
    Bolle, R.M., Connell, J.H., Pankanti, S., Ratha, N.K., Senior, A.W.: Guide to Biomet-rics. Springer Professional Computing, (2003) ISBN 0-387-40089-3Google Scholar
  7. 7.
    Cha, S., Srihari, S.N.: Writer Identification: Statistical Analysis and Dichotomizer. In: Amin, A., Pudil, P., Ferri, F., Iñesta, J.M. (eds.) SPR 2000 and SSPR 2000. LNCS, vol. 1876, pp. 123–132. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Kam, M., Fielding, B., Conn, R.: Writer Identification by Professional Document Ex-aminers. Jouranl of Forensic Sciences, vol 42, 778–786 (1997)Google Scholar
  9. 9.
    Cha, S., Srihari, S.N.: Multiple Feature Integration for Writer Verification. In: Pro-ceedings of 7th IWFHR2000, Amsterdam, Netherlands, p 333–342 (September 2000) ISBN 90-76942-01-3Google Scholar
  10. 10.
    Daugman, J.G.: High Confidence Visual Recognition of Persons by a Test of Statistical Independence. IEEE Trans. on Pattern Analysis and Machine Intelligence 15(11), 1148–1161 (1993)CrossRefGoogle Scholar
  11. 11.
    Ma, L., Tan, T., Wang, Y., Zhang, D.: Personal Identification Based on Iris Texture Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(12) (2003)Google Scholar
  12. 12.
    Kee, G., Byun, Y., Lee, K., Lee, Y.: Improved Techniques for an Iris Recognition System with High Performance. In: Stumptner, M., Corbett, D.R., Brooks, M. (eds.) Canadian AI 2001. LNCS (LNAI), vol. 2256, p. 177. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Mallat, S.G.: A theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Trans. Pattern Recognition and Machine Intelligence 11(4), 674–693 (1989)zbMATHCrossRefGoogle Scholar
  14. 14.
    Choi, S., Yoon, S., Cha, S.H., Tappert, C.C.: Use of Histogram Distances in Iris Au-thentication. In: Proceedings of International Conference on Machine Learning; Models, Technologies and Applications, Las Vegas, June 21-24 (2004)Google Scholar
  15. 15.
    Cha, S., Srihari, S.N.: On Measuring the Distance between Histograms. Pattern Recognition 35(6), 1355–1370 (2002)zbMATHCrossRefGoogle Scholar
  16. 16.
    Cha, S.: Fast Image Template and Dictionary Matching Algorithms. In: Chin, R., Pong, T.-C. (eds.) ACCV 1998. LNCS, vol. 1351, pp. 370–377. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  17. 17.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley & Sons, Inc., Chichester (2000)Google Scholar
  18. 18.
    Cherkassky, V., Friedman, J.H., Wechsler, H.: From Statistics to Neural Networks. In: Theory and Pattern Recognition Applications, NATO ASI ed., Springer, Heidelberg (1994)Google Scholar
  19. 19.
    Osuna, E.E., Freund, R., Girosi, F.: Support Vector Machines: Training and Applications. MIT Artificial Intelligence Laboratory and Center for Biological and Computational Learning Department of Brain and Cognitive Sciences. A.I. Memo No 1602, C.B.C.L. Paper No 144 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Sungsoo Yoon
    • 1
    • 2
  • Seung-Seok Choi
    • 1
  • Sung-Hyuk Cha
    • 1
  • Yillbyung Lee
    • 2
  • Charles C. Tappert
    • 1
  1. 1.Computer Science DepartmentPace UniversityPleasantvilleUSA
  2. 2.School of Engineering, Information and Industrial EngineeringYonsei UniversitySeoulKorea

Personalised recommendations