Extending PSBLAS to Build Parallel Schwarz Preconditioners

  • Alfredo Buttari
  • Pasqua D’Ambra
  • Daniela di Serafino
  • Salvatore Filippone
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3732)


We describe some extensions to Parallel Sparse BLAS (PSBLAS), a library of routines providing basic Linear Algebra operations needed to build iterative sparse linear system solvers on distributed-memory parallel computers. We focus on the implementation of parallel Additive Schwarz preconditioners, widely used in the solution of linear systems arising from a variety of applications. We report a performance analysis of these PSBLAS-based preconditioners on test cases arising from automotive engine simulations. We also make a comparison with equivalent software from the well-known PETSc library.


Sparse Matrix Sparse Linear System Domain Decomposition Algorithm Basic Linear Algebra Schwarz Preconditioners 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balay, S., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M., Curfman McInnes, L., Smith, B.F., Zhang, H.: PETScUsers Manual. Tech. Rep. ANL-95/11, Revision 2.1.6, Argonne National Laboratory (August 2003)Google Scholar
  2. 2.
    Cai, X.C., Saad, Y.: Overlapping Domain Decomposition Algorithms for General Sparse Matrices. Num. Lin. Alg. with Applics. 3(3), 221–237 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cai, X.C., Sarkis, M.: A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems. SIAM J. Sci. Comput. 21(2), 792–797 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cai, X.C., Widlund, O.B.: Domain Decomposition Algorithms for Indefinite Elliptic Problems. SIAM J. Sci. Stat. Comput. 13(1), 243–258 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chan, T., Mathew, T.: Domain Decomposition Algorithms. In: Iserles, A. (ed.) Acta Numerica 1994, pp. 61–143. Cambridge University Press, Cambridge (1994)Google Scholar
  6. 6.
    Dongarra, J.J., Whaley, R.C.: A User’s Guide to the BLACS v. 1.1. LapackWorking Note 94, Tech. Rep. UT-CS-95-281, University of Tennessee (March 1995) (updated May 1997)Google Scholar
  7. 7.
    Duff, I., Marrone, M., Radicati, G., Vittoli, C.: Level 3 Basic Linear Algebra Subprograms for Sparse Matrices: a User Level Interface. ACM Trans. Math. Softw. 23(3), 379–401 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Duff, I., Heroux, M., Pozo, R.: An Overview of the Sparse Basic Linear Algebra Subprograms: the New Standard from the BLAS Technical Forum. ACM Trans. Math. Softw. 28(2), 239–267 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Efstathiou, E., Gander, J.G.: Why Restricted Additive Schwarz Converges Faster than Additive Schwarz. BIT Numerical Mathematics 43, 945–959 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Filippone, S., Colajanni, M.: PSBLAS: A Library for Parallel Linear Algebra Computation on Sparse Matrices. ACM Trans. Math. Softw. 26(4), 527–550 (2000)CrossRefGoogle Scholar
  11. 11.
    Filippone, S., D’Ambra, P., Colajanni, M.: Using a Parallel Library of Sparse Linear Algebra in a Fluid Dynamics Applications Code on Linux Clusters. In: Joubert, G., Murli, A., Peters, F., Vanneschi, M. (eds.) Parallel Computing - Advances & Current Issues, pp. 441–448. Imperial College Press, London (2002)CrossRefGoogle Scholar
  12. 12.
    Frommer, A., Szyld, D.B.: An Algebraic Convergence Theory for Restricted Additive Schwarz Methods Using Weighted Max Norms. SIAM J. Num. Anal. 39(2), 463–479 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hirt, C.W., Amsden, A.A., Cook, J.L.: An Arbitrary Lagrangian-Eulerian ComputingMethod for All Flow Speeds. J. Comp. Phys. 14, 227–253 (1974)zbMATHCrossRefGoogle Scholar
  14. 14.
    Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)zbMATHCrossRefGoogle Scholar
  15. 15.
    Smith, B., Bjorstad, P., Gropp, W.: Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge (1996)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Alfredo Buttari
    • 1
  • Pasqua D’Ambra
    • 2
  • Daniela di Serafino
    • 3
  • Salvatore Filippone
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of Rome “Tor Vergata”RomeItaly
  2. 2.Institute for High-Performance Computing and NetworkingCNRNaplesItaly
  3. 3.Department of MathematicsSecond University of NaplesCasertaItaly

Personalised recommendations