Model Order Reduction for Large Scale Engineering Models Developed in ANSYS

  • Evgenii B. Rudnyi
  • Jan G. Korvink
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3732)

Abstract

We present the software mor4ansys that allows engineers to employ modern model reduction techniques to finite element models developed in ANSYS. We focus on how one extracts the required information from ANSYS and performs model reduction in a C++ implementation that is not dependent on a particular sparse solver. We discuss the computational cost with examples related to structural mechanics and thermal finite element models.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antoulas, A.C., Sorensen, D.C.: Approximation of Large-Scale Dynamical Systems: An overview. Applied Mathematics & Computer Science 11(5), 1093–1121 (2001)MATHMathSciNetGoogle Scholar
  2. 2.
    Rudnyi, E.B., Korvink, J.G.: Automatic Model Reduction for Transient Simulation of MEMSbased Devices. Sensors Update 11, 3–33 (2002)CrossRefGoogle Scholar
  3. 3.
    ANSYS, ANSYS Inc., http://www.ansys.com/
  4. 4.
    Boisvert, R.F., Pozo, R., Remington, K.A.: The Matrix Market Exchange Formats: Initial Design. NIST Interim Report 5935 (1996), http://math.nist.gov/MatrixMarket/
  5. 5.
    Rudnyi, E.B., Korvink, J.G.: Model Order Reduction of MEMS for Efficient Computer AidedDesign and System Simulation. In: Sixteenth International Symposium on Mathematical Theory of Networks and Systems, Belgium, July 5-9. Minisymposium TA8: Issues in model reduction of large-scale systems (2004)Google Scholar
  6. 6.
    Rudnyi, E.B., Korvink, J.G.: mor4ansys (version 1.6): Compact Behavioral Models from ANSYS by Means of Model Order Reduction. User Manual (2004), http://www.imtek.uni-freiburg.de/simulation/mor4ansys/
  7. 7.
    Rudnyi, E.B., Lienemann, J., Greiner, A., Korvink, J.G.: mor4ansys: Generating Compact Models Directly from ANSYSModels. In: Technical Proceedings of the 2004 Nanotechnology Conference and Trade Show, Nanotech, Bosten, Massachusetts, USA, March 7-11 (2004)Google Scholar
  8. 8.
    Bai, Z.J., Meerbergen, K., Su, Y.F.: Arnoldi methods for structure-preserving dimension reduction of second-order dynamical systems. In: Benner, P., Golub, G., Mehrmann, V., Sorensen, D. (eds.) Dimension Reduction of Large-Scale Systems. Lecture Notes in Computational Science and Engineering, Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Korvink, J.G., Rudnyi, E.B.: Oberwolfach Benchmark Collection. In: Benner, P., Golub, G., Mehrmann, V., Sorensen, D. (eds.) Dimension Reduction of Large-Scale Systems. Lecture Notes in Computational Science and Engineering, Springer, Heidelberg (2005), http://www.imtek.uni-freiburg.de/simulation/benchmark/ Google Scholar
  10. 10.
    Guide to Interfacing with ANSYS, ANSYS Inc. (2001)Google Scholar
  11. 11.
    Freund, R.W.: Krylov-subspace methods for reduced-order modeling in circuit simulation. Journal of Computational and Applied Mathematics 123, 395–421 (2000)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Balay, S., Eijkhout, V., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient Management of Parallelism in Object Oriented Numerical Software Libraries. In: Arge, E., Bruaset, A.M., Langtangen, H.P. (eds.) Modern Software Tools in Scientific Computing, pp. 163–202. Birkhäuser Press, Basel (1997), http://www-unix.mcs.anl.gov/petsc/petsc-2/ Google Scholar
  13. 13.
    Heroux, M., Bartlett, R., Howle, V., Hoekstra, R., Hu, J., et al.: An Overview of Trilinos. Sandia National Laboratories report SAND2003-2927 (2003), http://software.sandia.gov/trilinos/
  14. 14.
    Rotkin, V., Toledo, S.: The design and implementation of a new out-of-core sparse Cholesky factorization method. ACM Transactions on Mathematical Software 30, 19–46 (2004), http://www.tau.ac.il/ stoledo/taucs/Google Scholar
  15. 15.
    Davis, T.A.: Algorithm 832: UMFPACK V4.3, an unsymmetric-pattern multifrontal method. ACM Transactions on Mathematical Software 30(2), 196–199 (2004), http://www.cise.ufl.edu/research/sparse/umfpack/ MATHCrossRefGoogle Scholar
  16. 16.
    Davis, T.A.: A column pre-ordering strategy for the unsymmetric-pattern multifrontal method. ACM Transactions on Mathematical Software 30(2), 165–195 (2004)MATHCrossRefGoogle Scholar
  17. 17.
    Whaley, R.C., Petitet, A., Dongarra, J.: Automated Empirical Optimization of Software and the ATLAS project. Parallel Computing 27(1-2), 3–35 (2001), http://math-atlas.sourceforge.net/ MATHCrossRefGoogle Scholar
  18. 18.
    Lienemann, J., Rudnyi, E.B., Korvink, J.G.: MST MEMS model order reduction: Requirements and Benchmarks. Submitted to Linear Algebra and its Applications (2004)Google Scholar
  19. 19.
    Phillips, J.R.: Projection-based approaches for model reduction of weakly nonlinear, timevarying systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 22, 171–187 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Evgenii B. Rudnyi
    • 1
  • Jan G. Korvink
    • 1
  1. 1.IMTEK, Institute of Microsystem TechnologyFreiburg UniversityFreiburgGermany

Personalised recommendations