On Efficiency of Tightening Bounds in Interval Global Optimization

  • Antanas Žilinskas
  • Julius Žilinskas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3732)


The tightness of bounds is very important factor of efficiency of branch and bound based global optimization algorithms. An experimental model of interval arithmetic with controllable tightness of bounds is proposed to investigate the impact of bounds tightening in interval global optimization. A parallel version of the algorithm is implemented to cope with the computational intensity of the experiment. The experimental results on efficiency of tightening bounds are presented for several test and practical problems. The suitability of mater-slave type parallelization to speed up the experiments is justified.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches, 2nd edn. Springer, Heidelberg (1993)Google Scholar
  2. 2.
    Horst, R., Pardalos, P.: Handbook of Global Optimization. Kluwer Academic Publishers, Dodrecht (1995)zbMATHGoogle Scholar
  3. 3.
    Törn, A., Žilinskas, A.: Global Optimization. LNCS, vol. 350, pp. 1–255. Springer, Heidelberg (1989)zbMATHGoogle Scholar
  4. 4.
    Hansen, E., Walster, G.W.: Global Optimization Using Interval Analysis, 2nd edn. Marcel Dekker, New York (2003)Google Scholar
  5. 5.
    Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer Academic Publishers, Dodrecht (1996)zbMATHGoogle Scholar
  6. 6.
    Ratschek, H., Rokne, J.: New Computer Methods for Global Optimization. Ellis Horwood, Chichester (1995)Google Scholar
  7. 7.
    Žilinskas, J., Bogle, I.D.L.: Balanced random interval arithmetic. Computers and Chemical Engineering 28(5), 839–851 (2004)CrossRefGoogle Scholar
  8. 8.
    Žilinskas, J., Bogle, I.D.L.: Evaluation ranges of functions using balanced random interval arithmetic. Informatica 14(3), 403–416 (2003)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Clausen, J.: Parallel branch and bound – principles and personal experiences. In: Migdalas, A., Pardalos, P.M., Storøy, S. (eds.) Parallel Computing in Optimization, pp. 239–267. Kluwer Academic Publishers, Dordrecht (1997)Google Scholar
  10. 10.
    Gau, C.Y., Stadtherr, M.A.: Parallel branch-and-bound for chemical engineering applications: Load balancing and scheduling issues. In: Palma, J.M.L.M., Dongarra, J., Hernández, V. (eds.) VECPAR 2000. LNCS, vol. 1981, pp. 273–300. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Gendron, B., Crainic, T.G.: Parallel branch-and-bound algorithms – survey and synthesis. Operations Research 42(6), 1042–1066 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    SUN Microsystems. C++ Interval Arithmetic Programming Reference. Forte Developer 6 update 2 (Sun WorkShop 6 update 2) (2001) Google Scholar
  13. 13.
    Lerch, M., Tischler, G., von Gudenberg, J.W., Hofschuster, W., Krämer, W.: The interval library filib++ 2.0 - design, features and sample programs. Preprint 2001/4, UniversitätWuppertal (2001)Google Scholar
  14. 14.
    Žilinskas, J.: Comparison of packages for interval arithmetic. Informatica 16(1), 145–154 (2005)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Message Passing Interface Forum. MPI: A message-passing interface standard (version 1.1). Technical report (1995)Google Scholar
  16. 16.
    Madsen, K., Žilinskas, J.: Testing branch-and-bound methods for global optimization. Technical report 05/2000, Technical University of Denmark (2000)Google Scholar
  17. 17.
    Csendes, T.: Optimization methods for process network synthesis – a case study. In: Carlsson, C., Eriksson, I. (eds.) Global & multiple criteria optimization and information systems quality, pp. 113–132. Abo Academy, Turku (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Antanas Žilinskas
    • 1
    • 2
  • Julius Žilinskas
    • 1
  1. 1.Institute of Mathematics and InformaticsMIIVilniusLithuania
  2. 2.Vytautas Magnus University 

Personalised recommendations