Advertisement

Simulation-Based Analysis of Parallel Runge-Kutta Solvers

  • Matthias Korch
  • Thomas Rauber
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3732)

Abstract

We use simulation-based analysis to compare and investigate different shared-memory implementations of parallel and sequential embedded Runge-Kutta solvers for systems of ordinary differential equations. The results of the analysis help to provide a better understanding of the locality and scalability behavior of the implementations and can be used as a starting point for further optimizations.

Keywords

Access Structure Cache Size Data Cache Cache Line Memory Hierarchy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Austin, T., Larson, E., Ernst, D.: SimpleScalar: An infrastructure for computer system modeling. Computer 35(2), 59–67 (2002)CrossRefGoogle Scholar
  2. 2.
    Denning, P.J.: The working set model for program behavior. Communications of the ACM 11(5), 323–333 (1968)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Edler, J., Hill, M.D.: Dinero IV: Trace-driven uniprocessor cache simulator, http://www.cs.wisc.edu/~markhill/DineroIV/
  4. 4.
    Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd edn. Springer, Berlin (2000)Google Scholar
  5. 5.
    Herrod, S.A.: Using Complete Machine Simulation to Understand Computer System Behavior. PhD thesis, Stanford University (February 1998) Google Scholar
  6. 6.
    Korch, M., Rauber, T.: Scalable parallel RK solvers for ODEs derived by the method of lines. In: Kosch, H., Böszörményi, L., Hellwagner, H. (eds.) Euro-Par 2003. LNCS, vol. 2790, pp. 830–839. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Kowarschik, M., Weiß, C.: An overview of cache optimization techniques and cache-aware numerical algorithms. In: Meyer, U., Sanders, P., Sibeyn, J.F. (eds.) Algorithms for Memory Hierarchies. LNCS, vol. 2625, pp. 213–232. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Lioen, W.M., de Swart, J.J.B.: Test Set for Initial Value Problem Solvers, Release 2.1. CWI, Amsterdam, The Netherlands (September 1999)Google Scholar
  9. 9.
    Magnusson, P.S., Christensson, M., Eskilson, J., Forsgren, D., Hållberg, G., Högberg, J., Larsson, F., Moestedt, A., Werner, B.: Simics: A full system simulation platform. Computer 35(2), 50–58 (2002)CrossRefGoogle Scholar
  10. 10.
    Pingali, V.S., McKee, S.A., Hsieh, W.C., Carter, J.B.: Restructuring computations for temporal data cache locality. International Journal of Parallel Programming 31, 306–338 (2003)CrossRefGoogle Scholar
  11. 11.
    Rauber, T., Rünger, G.: Optimizing locality for ODE solvers. In: Proceedings of the 15th ACM International Conference on Supercomputing, pp. 123–132. ACM Press, New York (2001)CrossRefGoogle Scholar
  12. 12.
    Vera, X., Bermudo, N., Llosa, J., Gonzalez, A.: A fast and accurate framework to analyze and optimize cache memory behavior. ACM Transactions on Programming Languages and Systems (TOPLAS) 26(2), 263–300 (2004)CrossRefGoogle Scholar
  13. 13.
    Wallin, D., Johansson, H., Holmgren, S.: Cachememory behavior of advanced PDE solvers. Technical Report 2003-044, Department of Information Technology, Uppsala University (August 2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Matthias Korch
    • 1
  • Thomas Rauber
    • 1
  1. 1.Department of Mathematics, Physics, and Computer ScienceUniversity of Bayreuth 

Personalised recommendations