Advertisement

Towards Cache-Optimized Multigrid Using Patch-Adaptive Relaxation

  • Markus Kowarschik
  • Iris Christadler
  • Ulrich Rüde
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3732)

Abstract

Most of today’s computer architectures employ fast, yet relatively small cache memories in order to mitigate the effects of the constantly widening gap between CPU speed and main memory performance. Efficient execution of numerically intensive programs can only be expected if these hierarchical memory designs are respected. Our work targets the optimization of the cache performance of multigrid codes. The research efforts we will present in this paper first cover transformations that may be automized and then focus on fundamental algorithmic modifications which require careful mathematical analysis. We will present experimental results for the latter.

Keywords

Multigrid Method Loop Nest Grid Level Multigrid Algorithm Cache Block 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures. Morgan Kaufmann, San Francisco (2001)Google Scholar
  2. 2.
    Douglas, C.C., Hu, J., Kowarschik, M., Rüde, U., Weiß, C.: Cache Optimization for Structured and Unstructured Grid Multigrid. Electronic Transactions on Numerical Analysis 10, 21–40 (2000)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Goedecker, S., Hoisie, A.: Performance Optimization of Numerically Intensive Codes. SIAM, Philadelphia (2001)zbMATHCrossRefGoogle Scholar
  4. 4.
    Hackbusch, W.: Elliptic Differential Equations—Theory and Numerical Treatment. Springer Series in Computational Mathematics, vol. 18. Springer, Heidelberg (1992)zbMATHGoogle Scholar
  5. 5.
    Hackbusch, W.: Iterative Solution of Large Sparse Systems of Equations. Applied Mathematical Sciences, vol. 95. Springer, Heidelberg (1993)zbMATHGoogle Scholar
  6. 6.
    Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Approach, 3rd edn. Morgan Kaufmann, San Francisco (2003)Google Scholar
  7. 7.
    Kowarschik, M.: Data Locality Optimizations for Iterative Numerical Algorithms and Cellular Automata on Hierarchical Memory Architectures. PhD thesis, Lehrstuhl für Informatik 10 (Systemsimulation), Institut für Informatik, Universität Erlangen-Nürnberg, Erlangen, Germany, SCS Publishing House (July 2004) Google Scholar
  8. 8.
    Kowarschik, M., Weiß, C.: An overview of cache optimization techniques and cache-aware numerical algorithms. In: Meyer, U., Sanders, P., Sibeyn, J.F. (eds.) Algorithms for Memory Hierarchies. LNCS, vol. 2625, pp. 213–232. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Loshin, D.: Efficient Memory Programming. McGraw-Hill, New York (1998)Google Scholar
  10. 10.
    Lötzbeyer, H., Rüde, U.: Patch-Adaptive Multilevel Iteration. BIT 37(3), 739–758 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Quinlan, D., Schordan, M., Miller, B., Kowarschik, M.: ParallelObject-Oriented Framework Optimization. Concurrency and Computation: Practice and Experience 16(2-3), 293–302 (2004) Special Issue: Compilers for Parallel ComputersGoogle Scholar
  12. 12.
    Rivera, G., Tseng, C.-W.: Tiling Optimizations for 3D Scientific Computations. In: Proc. of the ACM/IEEE Supercomputing Conf., Dallas, Texas, USA (2000)Google Scholar
  13. 13.
    Rüde, U.: Mathematical and Computational Techniques for Multilevel Adaptive Methods. Frontiers in Applied Mathematics, vol. 13. SIAM, Philadelphia (1993)zbMATHGoogle Scholar
  14. 14.
    Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic Press, London (2001)zbMATHGoogle Scholar
  15. 15.
    Weiß, C.: Data Locality Optimizations forMultigridMethods on Structured Grids. PhD thesis, Lehrstuhl für Rechnertechnik und Rechnerorganisation, Institut für Informatik, Technische Universität München, Munich, Germany (December 2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Markus Kowarschik
    • 1
  • Iris Christadler
    • 1
  • Ulrich Rüde
    • 1
  1. 1.System Simulation Group, Computer Science DepartmentFriedrich-Alexander-University Erlangen-NurembergGermany

Personalised recommendations