Advertisement

Aggregation-Based Multilevel Preconditioning of Non-conforming FEM Elasticity Problems

  • Radim Blaheta
  • Svetozar Margenov
  • Maya Neytcheva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3732)

Abstract

Preconditioning techniques based on various multilevel extensions of two-level splittings of finite element (FE) spaces lead to iterative methods which have an optimal rate of convergence and computational complexity with respect to the number of degrees of freedom. This article deals with the construction of algebraic two-level and multilevel preconditioning algorithms for the Lamé equations of elasticity, which are discretized by Crouzeix-Raviart non-conforming linear finite elements on triangles. An important point to note is that in the non-conforming case the FE spaces corresponding to two successive levels of mesh refinements are not nested. To handle this, a proper aggregation-based two-level basis is considered, which enables us to fit the general framework of the two-level preconditioners and to generalize the method to the multilevel case. The derived estimate of the constant in the strengthened Cauchy-Bunyakowski-Schwarz (CBS) inequality is uniform with respect to both, mesh anisotropy and Poisson ratio, including the almost incompressible case.

Keywords

Nodal Unknown Finite Element Space Numerical Linear Algebra Nonlinear Elliptic Problem Mesh Anisotropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achchab, B., Axelsson, O., Laayouni, L., Souissi, A.: Strengthened Cauchy-Bunyakowski-Schwarz inequality for a three dimensional elasticity system. Numerical Linear Algebra with Applications 8(3), 191–205 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Achchab, B., Maitre, J.F.: Estimate of the constant in two strengthened CBS inequalities for FEM systems of 2D elasticity: Application to Multilevel methods and a posteriori error estimators. Numerical Linear Algebra with Applications 3(2), 147–160 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Axelsson, O., Blaheta, R.: Two simple derivations of universal bounds for the C.B.S. inequality constant. Applications of Mathematics 49(1), 57–72 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Axelsson, O., Margenov, S.: On multilevel preconditioners which are optimal with respect to both problem and discretization parameters. Computational Methods in Applied Mathematics 3(1), 6–22 (2003)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Axelsson, O., Padiy, A.: On the additive version of the algebraic multilevel iterationmethod for anisotropic elliptic problems. SIAM Journal on Scientific Computing 20(5), 1807–1830 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Axelsson, O., Vassilevski, P.S.: Algebraic Multilevel Preconditioning Methods I. Numerische Mathematik 56, 157–177 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Axelsson, O., Vassilevski, P.S.: Algebraic Multilevel Preconditioning Methods II. SIAM Journal on Numerical Analysis 27, 1569–1590 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Blaheta, R., Margenov, S., Neytcheva, M.: Uniform estimate of the constant in the strengthened CBS inequality for anisotropic non-conforming FEM systems. Numerical Linear Algebra with Applications 11, 309–326 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Blaheta, R., Margenov, S., Neytcheva, M.: Robust optimal multilevel preconditioners for nonconforming finite element systems. To appear in Numerical Linear Algebra with ApplicationsGoogle Scholar
  10. 10.
    Brenner, S., Scott, L.: The mathematical theory of finite element methods. Texts in applied mathematics, vol. 15. Springer, Heidelberg (1994)zbMATHGoogle Scholar
  11. 11.
    Brenner, S., Sung, L.: Linear finite element methods for planar linear elasticity. Math. Comp. 59, 321–338 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Eijkhout, V., Vassilevski, P.S.: The role of the strengthened Cauchy-Bunyakowski-Schwarz inequality in multilevel. SIAM Review 33, 405–419 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Farago, I., Karatson, J.: Numerical solution of nonlinear elliptic problems via preconditionionig operators. Theory and applications. NOVA Science (2002)Google Scholar
  14. 14.
    Kolev, T., Margenov, S.: Two-level preconditioning of pure displacement non-conforming FEM systems. Numerical Linear Algebra with Applications 6, 533–555 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Kolev, T., Margenov, S.: AMLI preconditioning of pure displacement non-conforming elasticity FEM systems. In: Vulkov, L.G., Waśniewski, J., Yalamov, P. (eds.) NAA 2000. LNCS, vol. 1988, pp. 482–489. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Margenov, S.: Upper bound of the constant in the strengthened C.B.S. inequality for FEM2D elasticity equations. Numer. Linear Algebra Appl. 1, 65–74 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Margenov, S., Vassilevski, P.S.: Algebraic multilevel preconditioning of anisotropic elliptic problems. SIAM Journal on Scientific Computing 15(5), 1026–1037 (1994)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Radim Blaheta
    • 1
  • Svetozar Margenov
    • 2
  • Maya Neytcheva
    • 3
  1. 1.Institute of GeonicsCzech Academy of SciencesOstrava-PorubaThe Czech Republic
  2. 2.Institute for Parallel ProcessingBulgarian Academy of SciencesSofiaBulgaria
  3. 3.Department of Information TechnologyUppsala UniversityUppsalaSweden

Personalised recommendations