Provable Anonymity for Networks of Mixes

  • Marek Klonowski
  • Mirosław Kutyłowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3727)

Abstract

We analyze networks of mixes used for providing untraceable communication. We consider a network consisting of k mixes working in parallel and exchanging the outputs – which is the most natural architecture for composing mixes of a certain size into networks able to mix a larger number of inputs at once. We prove that after \(\mathcal{O}\)(1) rounds the network considered provides a fair level of privacy protection for any number of messages n. Number of required rounds does not dependent on number of mixes provided that nk2 . No mathematical proof of this kind has been published before. We show that if at least one of server is corrupted we need substantially more rounds to meet the same requirements of privacy protection.

Keywords

anonymity mix network Markov chain rapid mixing coupling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aldous, D.: Random Walks of Finite Groups and Rapidly Mixing Markov Chains. In: Azéma, J., Yor, M. (eds.) Séminare de Probabilités XVII 1981/1982. Lecture Notes in Mathematics, vol. 986, pp. 243–297. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  2. 2.
    Auletta, V., Caragiannis, I., Kaklamanis, C., Persiano, P.: Randomized Path Coloring on Binary Trees. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp. 60–71. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Berman, R., Fiat, A., Ta-Shma, A.: Provable Unlinkability Against Traffic Analysis. In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 266–280. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Bubley, B., Dyer, M.: Path Coupling: A Technique for Proving Rapid Mixing in Markov Chains. ACM-SIAM FOCS 38, 223–231 (1997)Google Scholar
  5. 5.
    Czumaj, A., Kanarek, P., Kutyłowski, M., Loryś, K.: Switching Networks for Generating Random Permutations. In: Switching Networks: Recent Advances, pp. 25–61. Kluwer Academic Publishers, Dordrecht (2001); ISBN 0-7923-6953-XGoogle Scholar
  6. 6.
    Czumaj, A., Kutyłowski, M.: Delayed Path Coupling and Generating Random Permutations. Random Structures and Algorithms 17(3-4), 238–259 (2000)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Dingledine, R.: Anonymity Bibliography, http://freehaven.net/anonbib/
  8. 8.
    Chaum, D.: Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms. CACM 24(2), 84–88 (1981)Google Scholar
  9. 9.
    Golle, P., Jakobsson, M., Juels, A., Syverson, P.F.: Universal re-encryption for mixnets. In: Okamoto, T. (ed.) RSA-CT 2004. LNCS, vol. 2964, pp. 163–178. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Golle, P., Juels, A.: Parallel Mixing. In: ACM Conference on Computer and Communications Security (CCS), pp. 220–226 (2004)Google Scholar
  11. 11.
    Gomułkiewicz, M., Klonowski, M., Kutyłowski, M.: Rapid Mixing and Security of Chaum’s Visual Electronic Voting. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS, vol. 2808, pp. 132–145. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Gomułkiewicz, M., Klonowski, M., Kutyłowski, M.: Provable Unlinkability Against Traffic Analysis Already After \(\mathcal{O}(\log(n))\) Steps! In: Zhang, K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 354–366. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Gülcü, C., Tsudik, G.: Mixing E-mail with BABEL. In: ISOC Symposium on Network and Distributed System Security, pp. 2–16. IEEE, Los Alamitos (1996)CrossRefGoogle Scholar
  14. 14.
    Kesdogan, D., Egner, J., Büschkes, R.: Stop-and-Go-MIXes Providing Probabilistic Anonymity in an Open System. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 83–98. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  15. 15.
    Rackoff, C., Simon, D.R.: Cryptographic Defense Against Traffic Analysis. In: ACM Symposium on Theory of Computing, vol. 25, pp. 672–681 (1993)Google Scholar
  16. 16.
    Syverson, P.F., Reed, M.G., Goldschlag, D.M.: Anonymous Connections and Onion Routing. IEEE Journal on Selected Areas in Communication 16(4), 482–494 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Marek Klonowski
    • 1
  • Mirosław Kutyłowski
    • 1
  1. 1.Institute of Mathematics and Computer ScienceWrocław University of TechnologyWrocławPoland

Personalised recommendations