Advertisement

Efficient Steganography with Provable Security Guarantees

  • Aggelos Kiayias
  • Yona Raekow
  • Alexander Russell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3727)

Abstract

We provide a new provably-secure steganographic encryption protocol that is proven secure in the complexity-theoretic framework of Hopper et al. The fundamental building block of our steganographic encryption protocol is a “one-time stegosystem” that allows two parties to transmit one-time steganographic messages of length shorter than the shared key with information-theoretic security guarantees. The employment of a pseudorandom number generator (PRNG) allows the transmission of longer messages in the same way that such a generator allows the use of one-time pad encryption for messages longer than the key in symmetric encryption. The advantage of our construction compared to that of Hopper et al. is that it avoids the use of a pseudorandom function family and instead relies (directly) on a PRNG in a way that provides a linear versus constant improvement in the number of applications of the underlying (say) one-way permutation per bit transmitted. This advantageous trade-off is achieved by substituting the pseudorandom function family employed in the previous construction with an appropriate combinatorial construction that has been used extensively in derandomization, namely almost t-wise independent function families.

Keywords

Channel Distribution Function Family Security Parameter Pseudorandom Number Generator Pseudorandom Generator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cachin, C.: An information-theoretic model for steganography. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 306–318. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Zöllner, J., Federrath, H., Klimant, H., Pfitzmann, A., Piotraschke, R., Westfeld, A., Wicke, G., Wolf, G.: Modeling the security of steganographic systems. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 344–354. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Mittelholzer, T.: An information-theoretic approach to steganography and watermarking. In: Information Hiding, pp. 1–16 (1999)Google Scholar
  4. 4.
    Hopper, N.J., Langford, J., von Ahn, L.: Provably secure steganography. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 77–92. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33, 792–807 (1986)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions. J. ACM 51, 231–262 (2004)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Alon, N., Goldreich, O., Håstad, J., Peralta, R.: Simple construction of almost k-wise independent random variables. Random Struct. Algorithms 3, 289–304 (1992)zbMATHCrossRefGoogle Scholar
  8. 8.
    van Lint, J.: Introduction to Coding Theory, 3rd edn. Graduate Texts in Mathematics, vol. 86. Springer, Heidelberg (1998)Google Scholar
  9. 9.
    Gallager, R.G.: A simple derivation of the coding theorem and some applications. IEEE Transactions on Information Theory IT-11, 3–18 (1965)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Naor, J., Naor, M.: Small-bias probability spaces: Efficient constructions and applications. SIAM J. Comput. 22, 838–856 (1993)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Aggelos Kiayias
    • 1
  • Yona Raekow
    • 1
  • Alexander Russell
    • 1
  1. 1.University of ConnecticutStorrs

Personalised recommendations