Advertisement

Three Dimensional Fingertip Tracking in Stereovision

  • S. Conseil
  • S. Bourennane
  • L. Martin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3708)

Abstract

This paper presents a real time estimation method of the three dimensional trajectory of a fingertip. Pointing with the finger is indeed a natural gesture for Human Computer Interaction. Our approach is based on stereoscopic vision, with two standard webcams. The hand is segmented with skin color detection, and the fingertip is detected by the analysis of the curvature of finger boundary. The fingertip tracking is carried out by a three dimensional Kalman filter, in order to improve the detection with a local research, centered on the prediction of the 3-D position, and to filter the trajectory to reduce the estimation error.

Keywords

Reconstruction Error Gesture Recognition Hand Gesture Plane Trajectory Hand Gesture Recognition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pavlovic, V., Sharma, R., Huang, T.: Visual interpretation of hand gestures for human-computer interaction: A review. IEEE trans. on Pattern Analysis and Machine Intelligence 19 (1997)Google Scholar
  2. 2.
    Wu, A., Shah, M., da Vitoria Lobo, N.: A virtual 3d blackboard: 3d finger tracking using a single camera. In: Proc. of the IEEE Int. Conf. on Automatic Face and Gesture Recognition (2000)Google Scholar
  3. 3.
    Hung, Y., Yang, Y., Chen, Y., Hsieh, I., Fuh, C.: Free-hand pointer by use of an active stereo vision system. In: Proc. of the IEEE Int. Conf. on Pattern Recognition, Brisbane, pp. 1244–1246 (1998)Google Scholar
  4. 4.
    Crowley, J., Berard, F., Coutaz, J.: Finger tracking as an input device for augmented reality. In: IEEE Int. Workshop on Automatic Face and Gesture Recognition, Zurich, pp. 195–200 (1995)Google Scholar
  5. 5.
    Martin, J., Durand, J.B.: Automatic handwriting gestures recognition using hidden markov models. In: Proc. of the IEEE Int. Conf. on Automatic Face and Gesture Recognition (2000)Google Scholar
  6. 6.
    Oka, K., Sato, Y., Koike, H.: Real-time fingertip tracking and gesture recognition. IEEE trans. on Computer Graphics and Applications 22, 64–71 (2002)CrossRefGoogle Scholar
  7. 7.
    Segen, J., Kumar, S.: Human-computer interaction using gesture recognition and 3d hand tracking. In: Proc. of the IEEE Int. Conf. on Image Processing (1998)Google Scholar
  8. 8.
    Jojic, N., Huang, T., Brumitt, B., Meyers, B., Harris, S.: Detection and estimation of pointing gestures in dense disparity maps. In: Proc. of the IEEE Int. Conf. on Automatic Face and Gesture Recognition (2000)Google Scholar
  9. 9.
    Phung, S., Bouzerdoum, A., Chai, D.: Skin segmentation using color pixel classification: analysis and comparison. IEEE trans. on Pattern Analysis and Machine Intelligence 27 (2005)Google Scholar
  10. 10.
    Chai, D., Ngan, K.N.: Face segmentation using skin-color map in videophone applications. In: IEEE Trans. on Circuits and Systems for Video Technology, vol. 9 (1999)Google Scholar
  11. 11.
    Welch, G., Bishop, G.: An introduction to the kalman filter. Technical report (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • S. Conseil
    • 1
  • S. Bourennane
    • 1
  • L. Martin
    • 2
  1. 1.Univ. Paul Cézanne, Institut Fresnel (CNRS UMR 6133)Dom. Univ. de Saint JérômeMarseilleFrance
  2. 2.ST Microelectronics, ZI RoussetRoussetFrance

Personalised recommendations