FAST-EVP: An Engine Simulation Tool

  • Gino Bella
  • Alfredo Buttari
  • Alessandro De Maio
  • Francesco Del Citto
  • Salvatore Filippone
  • Fabiano Gasperini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3726)


FAST-EVP is a simulation tool for internal combustion engines running on cluster platforms; it has evolved from the KIVA-3V code base, but has been extensively rewritten making use of modern linear solvers, parallel programming techniques and advanced physical models.

The software is currently in use at the consulting firm NUMIDIA, and has been applied to a diverse range of test cases from industry, obtaining simulation results for complex geometries in short time frames.


Internal Combustion Engine Krylov Subspace Incomplete Factorization Spray Dynamic Numerical Library 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amsden, A.A., O’Rourke, P.J., Butler, T.D.: KIVA-II: A Computer Program for Chemically Reactive Flows with Sprays, Los Alamos National Lab., Tech. Rep. LA-11560-MS (1989)Google Scholar
  2. 2.
    Amsden, A.A.: KIVA 3: A KIVA Program with Block Structured Mesh for Complex Geometries, Los Alamos National Lab., Tech. Rep. LA-12503-MS (1993)Google Scholar
  3. 3.
    Barrett, R., Berry, M., Chan, T., Demmel, J., Donat, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., van der Vorst, H.: Templates for the solution of linear systems. SIAM, Philadelphia (1993)zbMATHGoogle Scholar
  4. 4.
    Buttari, A., D’Ambra, P., di Serafino, D., Filippone, S.: Extending PSBLAS to build parallel schwarz preconditioners. In: Dongarra, J., Madsen, K., Waśniewski, J. (eds.) PARA 2004. LNCS, vol. 3732, pp. 593–602. Springer, Heidelberg (2006) (to appear)CrossRefGoogle Scholar
  5. 5.
    D’Ambra, P., Di Serafino, D., Filippone, S.: On the Development of PSBLAS-based Parallel Two-level Schwarz Preconditioners, Preprint n. 1/2005, Dipartimento di Matematica, Seconda Universitá di Napoli (2005)Google Scholar
  6. 6.
    D’Ambra, P., Filippone, S., Nobile, P.: The Use of a Parallel Numerical Library in Industrial Simulations: The Case Study of the Design of a Two-Stroke Engine. In: Proc. of Annual Meeting of ISCS 1997, Istituto Motori-CNR ed. (1998)Google Scholar
  7. 7.
    Filippone, S., D’Ambra, P., Colajanni, M.: Using a Parallel Library of Sparse Linear Algebra in a Fluid Dynamics Applications Code on Linux Clusters. In: Joubert, G., Murli, A., Peters, F., Vanneschi, M. (eds.) Parallel Computing - Advances & Current Issues, pp. 441–448. Imperial College Press Pub., London (2002)CrossRefGoogle Scholar
  8. 8.
    Filippone, S., Colajanni, M.: PSBLAS: A library for parallel linear algebra computation on sparse matrices. ACM Trans. Math. Softw. 26(4), 527–550 (2000)CrossRefGoogle Scholar
  9. 9.
    Dongarra, J., Whaley, R.: A user’s guide to the BLACS v1.0. LAPACK working note #94 (June), University of Tennessee (1995),
  10. 10.
    O’Rourke, P.J., Amsden, A.A.: Implementation of a Conjugate Residual Iteration in the KIVA Computer Program, Los Alamos National Lab., Tech. Rep. LA-10849-MS (1986)Google Scholar
  11. 11.
    Nachtigal, N.M., Reddy, S.C., Threfethen, L.N.: How fast are nonsymmetric matrix iterations?, SIAM J. Matrix Anal. Applic. 13, 778–795 (1992)zbMATHCrossRefGoogle Scholar
  12. 12.
    Kelley, C.T.: Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia (1995)zbMATHGoogle Scholar
  13. 13.
    Greenbaum, A.: Iterative Methods for Solving Linear Systems. SIAM, Philadelphia (1997)zbMATHGoogle Scholar
  14. 14.
    Threfethen, L.N.: Pseudospectra of linear operators. SIAM Review 39, 383–406 (1997)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Hemisphere Publ. Corp.Google Scholar
  16. 16.
    Pracht, W.E.: Calculating Three–Dimensional Fluid Flows at All Speeds with an Eulerian–Lagrangian Computing Mesh. J. of Comp. Physics 17 (1975)Google Scholar
  17. 17.
    Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Pub, Boston (1996)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Gino Bella
    • 1
  • Alfredo Buttari
    • 1
  • Alessandro De Maio
    • 2
  • Francesco Del Citto
    • 1
  • Salvatore Filippone
    • 1
  • Fabiano Gasperini
    • 1
  1. 1.Faculty of EngineeringUniversità di Roma “Tor Vergata”RomeItaly
  2. 2.N.U.M.I.D.I.A s.r.l.RomeItaly

Personalised recommendations