Advertisement

Alignment of Tandem Repeats with Excision, Duplication, Substitution and Indels (EDSI)

  • Michael Sammeth
  • Thomas Weniger
  • Dag Harmsen
  • Jens Stoye
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3692)

Abstract

Traditional sequence comparison by alignment applies a mutation model comprising two events, substitutions and indels (insertions or deletions) of single positions (SI). However, modern genetic analysis knows a variety of more complex mutation events (e.g., duplications, excisions and rearrangements), especially regarding DNA. With the ever more DNA sequence data becoming available, the need to accurately compare sequences which have clearly undergone more complicated types of mutational processes is becoming critical.

Herein we introduce a new model, where in total four mutational events are considered: excision and duplication of tandem repeats, as well as substitutions and indels of single positions (EDSI). Assuming the EDSI model, we develop a new algorithm for pairwisely aligning and comparing DNA sequences containing tandem repeats. To evaluate our method, we apply it to the spa VNTR (variable number of tandem repeats) of Staphylococcus aureus, a bacterium of great medical importance.

Keywords

Tandem Repeat Duplication Event Repeat Type Edit Operation Repeat Copy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Behzadi, B., Steyaert, J.-M.: The minisatellite transformational problem revisted. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS (LNBI), vol. 3240, pp. 310–320. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Benson, G.: Sequence alignment with tandem duplication. J. Comput. Biol. 4, 351–367 (1997)CrossRefGoogle Scholar
  3. 3.
    Benson, G., Dong, L.: Reconstructing the duplication history of a tandem repeat. In: Proc. of ISMB 1999, pp. 44–53 (1999)Google Scholar
  4. 4.
    Bertrand, D., Gascuel, O.: Topological rearrangements and local search method for tandem duplication trees. IEEE/ACM Trans. Comput. Biol. Bioinformatics 2, 1–13 (2005)CrossRefGoogle Scholar
  5. 5.
    Bérard, S., Rivals, E.: Comparison of minisatellites. In: Proc. of RECOMB 2002, pp. 67–76 (2002)Google Scholar
  6. 6.
    de Macedo Brígido, M., Barardi, C.R.M., Bonjardin, C.A., Santos, C.L.S., de Lourdes Junqueira, M., Brentani, R.R.: Nucleotide sequence of a variant protein a of Staphylococcus aureus suggests molecular heterogeneity among strains. J. Basic Microbiol. 31, 337–345 (1991)CrossRefGoogle Scholar
  7. 7.
    Elemento, O., Gascuel, O., Lefranc, M.-P.: Reconstructing the duplication history of tandemly repeated genes. Mol. Biol. Evol. 19, 278–288 (2002)Google Scholar
  8. 8.
    Enright, M., Day, N., Davies, C., Peacock, S., Spratt, B.: Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 38, 1008–1015 (2000)Google Scholar
  9. 9.
    Groult, R., Léonard, M., Mouchard, L.: A linear algorithm for the detection of evolutive tandem repeats. In: The Prague Stringology Conference 2003 (2003)Google Scholar
  10. 10.
    Jaitly, D., Kearney, P., Lin, G.-H., Ma, B.: Reconstructing the duplication history of tandemly repeated genes. J. Comput. Sys. Sci. 65, 494–507 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kahl, B., Mellmann, A., Deiwick, S., Peters, G., Harmsen, D.: Variation of the polymorphic region X of the protein A gene during persistent airway infection of cystic fibrosis patients reflects two independent mechanisms of genetic change in Staphylococcus aureus. J. Clin. Microbiol. 43, 502–505 (2005)CrossRefGoogle Scholar
  12. 12.
    Koreen, L., Ramaswamy, S.V., Graviss, E.A., Naidich, S., Musser, J.M., Kreiswirth, B.N.: spa typing method for discriminating among staphylococcus aureus isolates: implications for use of a single marker to detect genetic micro- and macrovariation. J. Clin. Microbiol. 47, 792–799 (2004)CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Robinson, D.A., Enright, M.C.: Evolutionary models of the emerge of methicillin-resistant staphylococcus aureus. Antimicrob. Agents Chemother. 47, 3926–3934 (2003)CrossRefGoogle Scholar
  15. 15.
    Sammeth, M., Rothgänger, J., Esser, W., Albert, J., Stoye, J., Harmsen, D.: Qalign: quality based multiple alignments with dynamic phylogenetic analysis. Bioinformatics 19, 1592–1593 (2003)CrossRefGoogle Scholar
  16. 16.
    System, N.N.I.S.: National nocosomial infections surveillance (nnis) system report, data summary from january 1990-may 1999. Am. J. Infect. Control 27, 520–532 (1999)CrossRefGoogle Scholar
  17. 17.
    van Belkum, A., Scherer, S., van Alphen, L., Verbrugh, H.: Short-sequence dna repeats in prokaryotic genomes. Microbiol. Mol. Biol. Rev. 62, 275–293 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Michael Sammeth
    • 1
  • Thomas Weniger
    • 2
  • Dag Harmsen
    • 2
  • Jens Stoye
    • 1
  1. 1.Technische FakultätUniversität BielefeldGermany
  2. 2.Department of PeriodontologyUniversity Hospital MünsterGermany

Personalised recommendations