Minimum Recombination Histories by Branch and Bound

  • Rune B. Lyngsø
  • Yun S. Song
  • Jotun Hein
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3692)

Abstract

Recombination plays an important role in creating genetic diversity within species, and inferring past recombination events is central to many problems in genetics. Given a set M of sampled sequences, finding an evolutionary history for M with the minimum number of recombination events is a computationally very challenging problem. In this paper, we present a novel branch and bound algorithm for tackling that problem. Our method is shown to be far more efficient than the only preexisting exact method, described in [1]. Our software implementing the algorithm discussed in this paper is publicly available.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Song, Y.S., Hein, J.: Parsimonious reconstruction of sequence evolution and haplotype blocks. In: Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS (LNBI), vol. 2812, pp. 287–302. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Hudson, R.R., Kaplan, N.L.: Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 111, 147–164 (1985)Google Scholar
  3. 3.
    Myers, S.R., Griffiths, R.C.: Bounds on the minimum number of recombination events in a sample history. Genetics 163, 375–394 (2003)Google Scholar
  4. 4.
    Gusfield, D., Hickerson, D.: A new lower bound on the number of needed recombination nodes in both unrooted and rooted phylogenetic networks. Technical Report UCD-ECS-06, University of California, Davis (2004)Google Scholar
  5. 5.
    Song, Y.S., Hein, J.: On the minimum number of recombination events in the evolutionary history of DNA sequences. Journal of Mathematical Biology 48, 160–186 (2004)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bafna, V., Bansal, V.: Improved recombination lower bounds for haplotype data. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 569–584. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Song, Y.S., Wu, Y., Gusfield, D.: Efficient computation of close lower and upper bounds on the minimum number of recombinations in biological sequence evolution. In: Proceedings of the 13th International Conference on Intelligent Systems for Molecular Biology, ISMB (2005), (in press)Google Scholar
  8. 8.
    Fearnhead, P., Harding, R.M., Schneider, J.A., Myers, S., Donnelly, P.: Application of coalescent methods to reveal fine-scale rate variation and recombination hotspots. Genetics 167, 2067–2081 (2004)CrossRefGoogle Scholar
  9. 9.
    Griffiths, R.C., Marjoram, P.: An ancestral recombination graph. In: Progress in Population Genetics and Human Evolution. IMA Volumes in Mathematics and its Applications, vol. 87, pp. 257–270. Springer, Heidelberg (1997)Google Scholar
  10. 10.
    Kimura, M.: The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics 61, 893–903 (1969)Google Scholar
  11. 11.
    Gusfield, D.: Efficient algorithms for inferring evolutionary trees. Networks 21, 19–28 (1991)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Wang, L., Zhang, K., Zhang, L.: Perfect phylogenetic networks with recombination. Journal of Computational Biology 8, 69–78 (2001)CrossRefGoogle Scholar
  13. 13.
    Gusfield, D., Eddhu, S., Langley, C.: Optimal, efficient reconstruction of phylogenetic networks with constrained recombination. Journal of Bioinformatics and Computational Biology 2, 173–213 (2004)CrossRefGoogle Scholar
  14. 14.
    Kreitman, M.: Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster. Nature 304, 412–417 (1983)CrossRefGoogle Scholar
  15. 15.
    Nickerson, D.A., Taylor, S.L., Weiss, K.M., Clark, A.G., Hutchinson, R.G., Stengard, J., Salomaa, V., Vartiainen, E., Boerwinkle, E., Sing, C.F.: DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene. Nature Genetics 19, 216–217 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Rune B. Lyngsø
    • 1
  • Yun S. Song
    • 2
  • Jotun Hein
    • 1
  1. 1.Dept. of StatisticsOxford UniversityOxfordUnited Kingdom
  2. 2.Dept. of Computer ScienceUniversity of CaliforniaDavisU.S.A.

Personalised recommendations