Tracing-by-Linking Group Signatures
Abstract
In a group signature [19], any group member can sign on behalf of the group while remaining anonymous, but its identity can be traced in an future dispute investigation. Essentially all state-of-the-art group signatures implement the tracing mechnism by requiring the signer to escrow its identity to an Open Authority (OA) [2, 13, 4, 25, 5, 7, 24]. We call them Tracing-by-Escrowing (TbE) group signatures. One drawback is that the OA also has the unnecessary power to trace without proper cause. In this paper we introduce Tracing-by-Linking (TbL) group signatures. The signer’s anonymity is irrevocable by any authority if the group member signs only once (per event). But if a member signs twice, its identity can be traced by a public algorithm without needing any trapdoor. We initiate the formal study of TbL group signatures by introducing its security model, constructing the first examples, and give several applications. Our core construction technique is the successful transplant of the TbL technique from single-term offline e-cash from the blind signature framework [9, 22, 21] to the group signature framework. Our signatures have size O(1).
Preview
Unable to display preview. Download preview PDF.
References
- 1.Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer, Heidelberg (2002)CrossRefGoogle Scholar
- 2.Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)CrossRefGoogle Scholar
- 3.Bellare, M., Goldwasser, S.: Verifiable partial key escrow. In: ACM-CCS 1997, pp. 78–91 (1997)Google Scholar
- 4.Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal definitions, simplified requirements and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, Springer, Heidelberg (2003)Google Scholar
- 5.Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: The case of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Heidelberg (2005); Also ePrint 2004/077CrossRefGoogle Scholar
- 6.Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
- 7.Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)Google Scholar
- 8.Brands, S.: An efficient off-line electronic cash system based on the representation problem. Technical Report CS-R9323, CWI, CWI (April 1993)Google Scholar
- 9.Brands, S.: Untraceable off-line cash in wallet with observers. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 302–318. Springer, Heidelberg (1994)Google Scholar
- 10.Brands, S.: Untraceable off-line cash in wallets with observers. manuscript, CWI (1993)Google Scholar
- 11.Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. Cryptology ePrint Archive, Report 2004/205 (2004), http://eprint.iacr.org/
- 12.Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: ACM-CCS 2004, pp. 132–145 (2004); Also ePrint 2004/205Google Scholar
- 13.Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Heidelberg (2003)CrossRefGoogle Scholar
- 14.Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Heidelberg (2003)CrossRefGoogle Scholar
- 15.Camenisch, J., Stadler, M.: Proof systems for general systems of discrete logarithms. ETH Technical Report No. 260 (1997), ftp://ftp.inf.ethz.ch/pub/publications/tech-reports/
- 16.Canetti, R.: Universal composable security: a new paradigm for cryptographic protocols. In: FOCS 2001, pp. 136–145. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
- 17.Canetti, R., Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Adaptive security for threshold cryptosystems. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 98–115. Springer, Heidelberg (1999)Google Scholar
- 18.Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Aresettable zero-knowledge. In: STOC 2000, pp. 235–244. ACM Press, New York (2000)Google Scholar
- 19.Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)Google Scholar
- 20.Cramer, R., Damgard, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)Google Scholar
- 21.Ferguson, N.: Extensions of single-term coins. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 292–301. Springer, Heidelberg (1994)Google Scholar
- 22.Ferguson, N.: Single term off-line coins. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 318–328. Springer, Heidelberg (1994)Google Scholar
- 23.Fischlin, M.: The Cramer-Shoup strong-RSA signature scheme revisited. In: PKC, pp. 116–129 (2003)Google Scholar
- 24.Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer, Heidelberg (2004)CrossRefGoogle Scholar
- 25.Kiayias, A., Yung, M.: Group signatures: provable security, efficient constructions, and anonymity from trapdoor-holders. Cryptology ePrint Archive, Report 2004/076 (2004), http://eprint.iacr.org/
- 26.Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signature for ad hoc groups (extended abstract). In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004)CrossRefGoogle Scholar
- 27.Lysyanskaya, A., Ramzan, Z.: Group blind digital signatures: A scalable solution to electronic cash. In: Hirschfeld, R. (ed.) FC 1998. LNCS, vol. 1465, pp. 184–197. Springer, Heidelberg (1998)CrossRefGoogle Scholar
- 28.Maitland, G., Boyd, C.: Fair electronic cash based on a group signature scheme. In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS, vol. 2229, p. 461. Springer, Heidelberg (2001)CrossRefGoogle Scholar
- 29.Maitland, G., Reid, J., Foo, E., Boyd, C., Dawson, E.: Linkability in practical electronic cash design. In: Okamoto, E., Pieprzyk, J.P., Seberry, J. (eds.) ISW 2000. LNCS, vol. 1975, pp. 149–163. Springer, Heidelberg (2000)CrossRefGoogle Scholar
- 30.Micali, S.: Gauranteed partial key escrow. memo 537, MIT (1995)Google Scholar
- 31.Mitsunari, S., Sakai, R., Kasahara, M.: A new traitor tracing. IEICE Trans. Fundamentals E85-A(2), 481–484 (2002)Google Scholar
- 32.Nakanishi, T., Fujiwara, T., Watanabe, H.: A linkable group signature and its application to secret voting. In: 4th Int’l Symp. on Communicatin Theory and Appl. (1997)Google Scholar
- 33.Nakanishi, T., Fujiwara, T., Watanabe, H.: A linkable group signature and its application to secret voting. Trans. of Information Processing Society of Japan 40(7), 3085–3096 (1999)MathSciNetGoogle Scholar
- 34.Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)CrossRefGoogle Scholar
- 35.Shamir, A.: Partial key escrow: a new approach to software key escrow. presentation at NIST key escrow standards meeting (September 15, 1995)Google Scholar
- 36.Traoré, J.: Group signatures and their relevance to privacy-protecting off-line electronic cash systems. In: Pieprzyk, J.P., Safavi-Naini, R., Seberry, J. (eds.) ACISP 1999. LNCS, vol. 1587, pp. 228–243. Springer, Heidelberg (1999)CrossRefGoogle Scholar
- 37.Tsang, P.P., Wei, V.K.: Short linkable ring signatures for e-voting, e-cash and attestation. In: Deng, R.H., Bao, F., Pang, H., Zhou, J. (eds.) ISPEC 2005. LNCS, vol. 3439, pp. 48–60. Springer, Heidelberg (2005)CrossRefGoogle Scholar
- 38.Tsang, P.P., Wei, V.K., Au, M.H., Chan, T.K., Liu, J.K., Wong, D.S.: Separable linkable threshold ring signatures. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 298–384. Springer, Heidelberg (2004)CrossRefGoogle Scholar
- 39.Wei, V.K.: Tracing-by-linking group signatures. Cryptology ePrint Archive, Report 2004/370 (2004), http://eprint.iacr.org/
- 40.Zhang, F., Safavi-Naini, R., Susilo, W.: An efficient signature scheme from bilinear pairings and its applications. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 277–290. Springer, Heidelberg (2004)CrossRefGoogle Scholar