A Wiener Neuronal Model with Refractoriness

  • Virginia Giorno
  • Amelia G. Nobile
  • Luigi M. Ricciardi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3643)


A mathematical characterization of the membrane potential as an instantaneous return process in the presence of random refractoriness is investigated for the Wiener neuronal model. In the case of constant refractoriness, simple closed form expressions are obtained.


Membrane Potential Probability Density Function Neuronal Model Refractory Period Wiener Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cox, D.R., Miller, H.D.: The Theory of Stochastic Processes, Methuen, London (1970)Google Scholar
  2. 2.
    Esposito, G., Giorno, V., Nobile, A.G., Ricciardi, L.M., Valerio, C.: Interspike analysis for a single neuron’s activity in presence of refractoriness. In: Trappl, R. (ed.) Cybernetics and Systems, vol. 1, pp. 199–204. Austrian Society for Cybernetics Studies, Vienna (2004)Google Scholar
  3. 3.
    Gerstein, G.L., Mandelbrot, B.: Random walk models for the spike activity of a single neuron. Biophys. J. 4, 41–68 (1964)CrossRefGoogle Scholar
  4. 4.
    Giorno, V., Nobile, A.G., Ricciardi, L.M.: On the moments of firing numbers in diffusion neuronal models with refractoriness. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3561, pp. 186–194. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Ricciardi, L.M., Di Crescenzo, A., Giorno, V., Nobile, A.G.: An outline of theoretical and algorithmic approaches to first passage time problems with applications to biological modeling. Math. Japonica 50(2), 247–322 (1999)zbMATHGoogle Scholar
  6. 6.
    Ricciardi, L.M., Esposito, G., Giorno, V., Valerio, C.: Modeling Neuronal Firing in the Presence of Refractoriness. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003. LNCS, vol. 2686, pp. 1–8. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Virginia Giorno
    • 1
  • Amelia G. Nobile
    • 1
  • Luigi M. Ricciardi
    • 2
  1. 1.Dipartimento di Matematica e InformaticaUniversità di SalernoFisciano (SA)Italy
  2. 2.Dipartimento di Matematica e ApplicazioniUniversità di Napoli Federico IINapoliItaly

Personalised recommendations