Cue Combination for Robust Real-Time Multiple Face Detection at Different Resolutions

  • M. Castrillón-Santana
  • O. Déniz-Suárez
  • C. Guerra-Artal
  • J. Isern-González
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3643)


This paper describes a face detection system conceived to process video streams in real-time. Cue combination allows the system to tackle the temporal restrictions achieving a notable detection rate. The system developed is able to detect simultaneously at different resolutions multiple individuals building a feature based model for each detected face.


Video Stream Face Detection Temporal Coherence Face Pattern Previous Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Castrillón Santana, M., Hernández Tejera, F.M., Cabrera Gámez, J.: Encara: real-time detection of frontal faces. In: International Conference on Image Processing, Barcelona, Spain (September 2003)Google Scholar
  2. 2.
    Artal, C.G.: Contribuciones al seguimiento visual precategórico. PhD thesis, Universidad de Las Palmas de Gran Canaria, (Octubre 2002)Google Scholar
  3. 3.
    Hjelmas, E., Low, B.K.: Face detection: A survey. Computer Vision and Image Understanding 83(3), 236–274 (2001)zbMATHCrossRefGoogle Scholar
  4. 4.
    Intel. Intel Open Source Computer Vision Library, b4.0 (August 2004),
  5. 5.
    Kruppa, H., Santana, M.C., Schiele, B.: Fast and robust face finding via local context. In: Joint IEEE Internacional Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance (VS-PETS), October 2003, pp. 157–164 (2003)Google Scholar
  6. 6.
    Li, S.Z., Zhu, L., Zhang, Z.Q., Blake, A., Zhang, H.J., Shum, H.: Statistical learning of multi-view face detection. In: European Conference Computer Vision, pp. 67–81 (2002)Google Scholar
  7. 7.
    Lienhart, R., Maydt, J.: An extended set of haar-like features for rapid object detection. In: IEEE ICIP 2002, September 2002, vol. 1, pp. 900–903 (2002)Google Scholar
  8. 8.
    Pentland, A.: Looking at people: Sensing for ubiquitous and wearable computing. IEEE Trans. on Pattern Analysis and Machine Intelligence, 107–119 (January 2000)Google Scholar
  9. 9.
    Schneiderman, H., Kanade, T.: A statistical method for 3d object detection applied to faces and cars. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1746–1759 (2000)Google Scholar
  10. 10.
    Storring, M., Andersen, H.J., Granum, E.: Physics-based modelling of human skin colour under mixed illuminants. Robotics and Autonomous Systems (2001)Google Scholar
  11. 11.
    Viola, P., Jones, M.J.: Rapid object detection using a boosted cascade of simple features. Computer Vision and Pattern Recognition, 511–518 (2001)Google Scholar
  12. 12.
    Wren, C., Azarrbayejani, A., Darrell, T., Pentland, A.: Pfinder: Real-time tracking of the human body. IEEE Trans. on Pattern Analysis and Machine Intelligence 19(7), 780–785 (1997)CrossRefGoogle Scholar
  13. 13.
    Yang, M.-H., Kriegman, D., Ahuja, N.: Detecting faces in images: A survey. Transactions on Pattern Analysis and Machine Intelligence 24(1), 34–58 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • M. Castrillón-Santana
    • 1
  • O. Déniz-Suárez
    • 1
  • C. Guerra-Artal
    • 1
  • J. Isern-González
    • 1
  1. 1.IUSIANI, Edif. Ctral. del Parque Científico TecnológicoUniversidad de Las Palmas de Gran CanariaSpain

Personalised recommendations