Skeleton Extraction of 2D Objects Using Shock Wavefront Detection

  • Rubén Cárdenes
  • Juan Ruiz-Alzola
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3643)


This paper proposes a method for computing the medial axis transform (MAT) or the skeleton of a general 2D shape using a technique with a high performance, based on a distance transform computation from the shape’s boundaries. The distance transform is computed propagating a wavefront from the boundary, and the skeleton is obtained detecting the points where the wavefronts collide themselves, and applying connectivity rules during the process. This method has two main advantages: the efficiency and the preservation of the skeleton properties.


Voronoi Diagram Medial Axis Propagation Front Shape Boundary Connectivity Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blum, H.: A transformation for extracting new descriptors of shape. In: Wathen-Dunn, W. (ed.) Proc. Models for the Perception of Speech and Visual Form, pp. 362–380. MIT Press, Cambridge (1967)Google Scholar
  2. 2.
    Montanari, U.: A method for obtaining skeletons using a quasi-euclidean distance. Journal of the Association for Computing Machinery 15(4), 600–624 (1968)MathSciNetGoogle Scholar
  3. 3.
    Rosenfeld, A., Pfaltz, J.L.: Sequential operations in digital picture processing. J. Assoc. Comp. Mach. 13, 471–494 (1966)zbMATHGoogle Scholar
  4. 4.
    Danielsson, P.E.: Euclidean distance mapping. Computer Graphics and Image Processing 14, 227–248 (1980)CrossRefGoogle Scholar
  5. 5.
    Ammann, C.J., Sartori-Angus, A.G.: Fast thinning algorithm for binary images. Image Vision Comput. 3(2), 71–79 (1985)CrossRefGoogle Scholar
  6. 6.
    Zhang, Y.Y., Wan, P.S.P.: A parallel thinning algorithm with two-subiteration that generates one-pixel-wide skeletons. In: Proceedings of International Conference on Patter Recognition, vol. 4, pp. 457–461. IEEE Computer Society, Los Alamitos (1996)CrossRefGoogle Scholar
  7. 7.
    Arcelli, C., di Baja, G.S.: Finding local maxima in a pseudo-euclidean distance transformation. In: CVGIP, vol. 43, pp. 361–367 (1988)Google Scholar
  8. 8.
    Ogniewicz, R., Ilg, M.: Voronoi skeletons: Theory and applications. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, CVPR, pp. 63–69. IEEE Computer Society, Los Alamitos (1992)Google Scholar
  9. 9.
    Brandt, J.W., Algazi, V.R.: Continuous skeleton computation by Voronoi diagram. In: CVGIP Image Understanding, vol. 55, pp. 329–338 (1992)Google Scholar
  10. 10.
    Sugihara, K.: Approximation of generalized Voronoi diagrams by ordinary Voronoi diagrams. CVGIP: Graphical Models and Image Processing 55(6), 522–531 (1993)CrossRefGoogle Scholar
  11. 11.
    Kimmel, R., Shaked, D., Kiryati, N., Bruckstein, A.M.: Skeletonization via distance maps and level sets. Computer Vision and Image Understanding: CVIU 62(3), 382–391 (1995)CrossRefGoogle Scholar
  12. 12.
    Cardenes, R.: Esquemas eficientes de geometría computacional aplicados a la segmentacióon de imágenes médicas, Ph.D. thesis, University of Las Palmas de Gran Canaria (2004)Google Scholar
  13. 13.
    Verwer, B.H., Verbeek, P.W., Dekker, S.T.: An efficient uniform cost algorithm applied to distance transforms. IEEE Transactions on Pattern Analysis an Machine Intelligence 11(4), 425–429 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Rubén Cárdenes
    • 1
  • Juan Ruiz-Alzola
    • 2
  1. 1.Medical Technology CenterUniversity of Las Palmas GCSpain
  2. 2.Canary Islands Institute of Technology (ITC)Spain

Personalised recommendations