Algorithm for Proving the Knowledge of an Independent Vertex Set

  • Pino Caballero-Gil
  • Candelaria Hernández-Goya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3643)


A new protocol is presented that allows to convince of the knowledge of a solution to the Independent Vertex Set Problem without revealing anything about it. It is constructed from a bit commitment scheme based on the hardness of the Discrete Logarithm Problem, which guarantees its efficient performance and formal security. One of its possible applications is node identification in ad-hoc wireless network because it does not require any authentication servers. Furthermore, recent works on network security has pointed out the importance of the design of efficient Zero Knowledge Proofs of Knowledge for the Independent Vertex Set Problem in broadcast models.


Polynomial Time Access Structure Authentication Server Discrete Logarithm Problem Commitment Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge. Journal of Computer and System Sciences 37, 156–189 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Brockington, M., Culberson, J.: Camouflaging independent vertex sets in quasi-random graphs. In: Johnson, D., Trick, M. (eds.) Cliques, Coloring and Satisfability, vol. XXVI, pp. 75–88. American Mathematical Society, Providence (1994)Google Scholar
  3. 3.
    Caballero, P., Hernández, C.: Strong Solutions to the Identification Problem. In: Wang, J. (ed.) COCOON 2001. LNCS, vol. 2108, pp. 257–261. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Chaum, D., Evertse, J.H., van de Graaf, J., Peralta, R.: Demonstrating possession of a discrete logarithm without revealing it. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 200–212. Springer, Heidelberg (1987)Google Scholar
  5. 5.
    Desmedt, Y., Wang, Y.: Efficient Zero-Knowledge Protocols for Some Practical Graph Problems. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 290–302. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. Journal of Cryptology 1, 77–95 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)Google Scholar
  8. 8.
    Fortin, S.: The Graph Isomorphism Problem. Technical Report TR 96-20, University of Alberta, Department of Computer Science (1996)Google Scholar
  9. 9.
    Fortnow, L.: The complexity of perfect zero-knowledge. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC 1987, pp. 204–209 (1987)Google Scholar
  10. 10.
    Franklin, M., Wrigh, R.: Secure communication in minimal connectivity models. Journal of Cryptology 13, 9–30 (2000)zbMATHCrossRefGoogle Scholar
  11. 11.
    Goldreich, O., Micali, S., Wigderson, A.: How to prove all NP-statements in zero-knowledge, and a methodology of cryptographic protocol design. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 171–185. Springer, Heidelberg (1987)Google Scholar
  12. 12.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems. In: Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing (STOC 1985), pp. 291–304 (1985)Google Scholar
  13. 13.
    Santis, A.D., Crescenzo, G.D., Goldreich, O., Persiano, G.: The graph clustering problem has a perfect zero-knowledge proof. Information Processing Letters 69, 201–206 (1999)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Pino Caballero-Gil
    • 1
  • Candelaria Hernández-Goya
    • 1
  1. 1.Dept. Statistics, Operations Research and ComputingUniversity of La LagunaLa LagunaSpain

Personalised recommendations