Meteorological Image Descriptors

  • J. L. Crespo
  • P. Bernardos
  • M. E. Zorrilla
  • E. Mora
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3643)


The objective of this paper is to get a visual characterization of time evolution images, in particular, synoptic maps taken from Meteorology. Preliminary tasks required before image processing are reviewed. Two different types of numerical descriptors are extracted for characterizing the images, the called low level numerical descriptors, and the high level corresponding ones. The latter will be subsequently used for prediction tasks, meanwhile the former will be used for classification tasks. Three different relevant information sources in the images are identified as their low level descriptors. These are defined by the local density and orientation of the isobar lines, and the number of centres of high (H) and low (L) pressure. Regarding the high level descriptors, two main features are taken into account. The different procedures carried out to extract the previous descriptors for our images of interest are discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Crespo, J.L., Bernardos, P., Zorrilla, M.E., Mora, E.: Preprocessing phase in the PIETSI project (Prediction of time evolution images using intelligent systems). In: Moreno-Díaz Jr., R., Pichler, F. (eds.) EUROCAST 2003. LNCS, vol. 2809, pp. 651–659. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vision 1(4), 321–331 (1988)CrossRefGoogle Scholar
  3. 3.
    Waller, W.G., Jain, A.K.: On the monotonicity of the performance of a Bayesian classifier. IEEE Transactions on Information Theory 24(3), 392–394 (1978)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Naya, A.: Meteorología superior. Espasa Calpe (1984)Google Scholar
  5. 5.
    Sonka, M., Hlavac, V., Boyle, R.: Image processing, analysis and machine vision. International Thomson Computer, London (1996)Google Scholar
  6. 6.
    Shalkoff, R.J.: Digital Image Processing and computer vision. Wiley, New York (1989)Google Scholar
  7. 7.
    Jähne, B.: Digital Image Processing. In: Concepts, Algorithms and Scientific Applications, 4th edn. Springer, Heidelberg (1997)Google Scholar
  8. 8.
    González, J.: Visión por Computador, Paraninfo, Madrid (1999)Google Scholar
  9. 9.
    Cole, R.A. (ed. in chief): Survey of the State of the Art in Human Language Technology. Cambridge University Press, Cambridge (1996)Google Scholar
  10. 10.
    Young, I.T., Gerbrands, J.J., van Vliet, L.J.: Fundamentals of Image Processing. Delft University of Technology, The Netherlands (1998)Google Scholar
  11. 11.
    González, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice Hall, Englewood Cliffs (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • J. L. Crespo
    • 1
  • P. Bernardos
    • 1
  • M. E. Zorrilla
    • 1
  • E. Mora
    • 1
  1. 1.Department of Applied Mathematics and Computer SciencesUniversity of CantabriaSantanderSpain

Personalised recommendations