The Optimal Wire Order for Low Power CMOS

  • Paul Zuber
  • Peter Gritzmann
  • Michael Ritter
  • Walter Stechele
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3728)


If adjacent wires are brought into a simple specific order of their switching activities, the effect of power optimal wire spacing can be increased. In this paper we will present this order along with a prove of this observation. For this purpose, it is shown how to derive the new power optimal wire positions by solving a geometric program. Due to their simplicity in implementation, both principles reported substantially differ from previous approaches. We also quantify the power optimization potential for wires based on a representative circuit model, with promising results.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boyd, S., Kim, S.J., Mohan, S.S.: Geometric Programming and its Applications to EDA Problems. Date 05 Tutorial Notes (2005)Google Scholar
  2. 2.
    Cong, J., Koh, C., Pan, Z.: Interconnect Sizing and Spacing with Consideration of Coupling Capacitance. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 6, 1164–1169 (2001)CrossRefGoogle Scholar
  3. 3.
    Embacher, W.: Analysis of Automated Power Saving Techniques using Power Compiler (TM). LIS Diploma Thesis, TU München, Germany (May 2004)Google Scholar
  4. 4.
    Groeneveld, P.: Wire ordering for detailed routing. Design & Test of Computers 6, 6–17 (1989)CrossRefGoogle Scholar
  5. 5.
    Ho, R., Mai, K.W., Horowitz, M.A.: The future of wires. Proceedings Of The IEEE 89(4), 490–504 (2001)CrossRefGoogle Scholar
  6. 6.
    Computational Optimization Laboratory. A geometric programming solver, COPL GP (2000), Internet:
  7. 7.
    Macii, E., Poncino, M., Salerno, S.: Combining wire swapping and spacing for low-power deep-submicron buses. In: Proceedings of the 13th ACM Great Lakes symposium on VLSI, pp. 198–202 (2003)Google Scholar
  8. 8.
    Moiseev, K.: Net-Ordering for Optimal Circuit Timing in Nanometer Interconnect Design. CCIT Report #506, Haifa, Israel (October 2004)Google Scholar
  9. 9.
    Nabors, K.: FastCap. MIT, 1992 (2005)Google Scholar
  10. 10.
    Rockafellar, R.: Constrained Global Optimization: Algorithms and Applications. Springer, Heidelberg (1987)Google Scholar
  11. 11.
    SIA. International Technology Roadmap for Semiconductors (2005), Internet:
  12. 12.
    Windschiegl, A., Stechele, W.: Exploiting metal layer characteristics for lowpower routing. In: Hochet, B., Acosta, A.J., Bellido, M.J. (eds.) PATMOS 2002. LNCS, vol. 2451, p. 55. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Zuber, P., Müller, F., Stechele, W.: Optimization Potential of CMOS Power by Wire Spacing. Lecture Notes in Informatics (2005)Google Scholar
  14. 14.
    Zuber, P., Windschiegl, A., Stechele, W.: Reduction of CMOS Power Consumption and Signal Integrity Issues by Routing Optimization. Design, Automation & Test in Europe DATE (March 2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Paul Zuber
    • 1
  • Peter Gritzmann
    • 2
  • Michael Ritter
    • 2
  • Walter Stechele
    • 1
  1. 1.Institute for Integrated SystemsTU MünchenGermany
  2. 2.Institute for Combinatorial GeometryTU MünchenGermany

Personalised recommendations