Advertisement

Supervised Texture Detection in Images

  • Branislav Mičušík
  • Allan Hanbury
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3691)

Abstract

This paper presents a technique for texture segmentation in images. Providing a small template of a texture of interest results in the image being segmented into regions with similar properties and background (non-similar) regions. The core of the segmentation engine is based on the minimal cut/maximal flow algorithm in the graph representing an image. The main contribution lies in incorporating the template information (colour, texture) into the whole graph used for segmentation. The method brings the possibility to locate textured regions in the image having same property as the template patch and not only one-colored regions (as in much existing work). The method is supervised since the user provides a representative template of an object being searched for. The object may consist of several isolated parts. Experimental results are presented on some images from the Berkeley database.

Keywords

Image Segmentation Foreground Object Texture Region Texture Gradient Small Template 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apostoloff, N., Fitzgibbon, A.: Bayesian estimation of layers from multiple images. In: Proc. CVPR, vol. 1, pp. 407–414 (2004)Google Scholar
  2. 2.
    Blake, A., Rother, C., Brown, M., Perez, P., Torr, P.H.S.: Interactive image segmentation using an adaptive GMMRF model. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 428–441. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Boykov, Y., Jolly, M.-P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: Proc. ICCV, pp. 105–112 (2001)Google Scholar
  4. 4.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. PAMI 26(9), 1124–1137 (2004)Google Scholar
  5. 5.
    Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? PAMI 26(2), 147–159 (2004)Google Scholar
  6. 6.
    Malik, J., Belongie, S., Leung, T., Shi, J.: Contour and texture analysis for image segmentation. IJCV 43(1), 7–27 (2001)zbMATHCrossRefGoogle Scholar
  7. 7.
    Martin, D.R., Fowlkes, C.C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. PAMI 26(5), 530–549 (2004)Google Scholar
  8. 8.
    Mičušík, B., Hanbury, A.: Steerable semi-automatic segmentation of textured images. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 35–44. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Paragios, N., Deriche, R.: Coupled geodesic active regions for image segmentation: A level set approach. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 224–240. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Paragios, N., Deriche, R.: Geodesic active regions and level set methods for supervised texture segmentation. IJCV 46(3), 223–247 (2002)zbMATHCrossRefGoogle Scholar
  11. 11.
    Ruzon, M., Tomasi, C.: Alpha estimation in natural images. In: Proc. CVPR, vol. 1, pp. 18–25 (2000)Google Scholar
  12. 12.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. PAMI 22(8), 888–905 (2000)Google Scholar
  13. 13.
    Stella, X.Y.: Segmentation using multiscale cues. In: Proc. CVPR, vol. 1, pp. 247–254 (2004)Google Scholar
  14. 14.
    Wexler, Y., Fitzgibbon, A.W., Zisserman, A.: Bayesian estimation of layers from multiple images. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 487–501. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Zabih, R., Kolmogorov, V.: Spatially coherent clustering using graph cuts. In: Proc. CVPR, vol. 2, pp. 437–444 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Branislav Mičušík
    • 1
  • Allan Hanbury
    • 1
  1. 1.Pattern Recognition and Image Processing Group, Institute of Computer, Aided AutomationVienna University of TechnologyViennaAustria

Personalised recommendations