Variational Analysis of Spherical Images

  • Atsushi Imiya
  • Hironobu Sugaya
  • Akihiko Torii
  • Yoshihiko Mochizuki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3691)


This paper focuses on variational image analysis on a sphere. Since a sphere is a closed Riemannian manifold with the positive constant curvature and no holes, a sphere has similar geometrical properties with a plane, whose curvature is zero. Images observed through a catadioptric system with a conic-mirror and a dioptric system with fish-eye lens are transformed to images on the sphere. Therefore, in robot vision, image analysis on the sphere is an essential requirement to the application of the omni-directional imaging system with conic-mirror and fish-eye lens for navigation and control. We introduce algorithms for optical flow computation for images on a sphere.


Unit Sphere Robot Vision Spherical Image Closed Riemannian Manifold Optical Flow Computation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zdunkowski, W., Bott, A.: Dynamics of the Atmosphere. Cambridge University Press, Cambridge (2003)Google Scholar
  2. 2.
    Morel, J.-M., Solimini, S.: Variational Methods in Image Segmentation. Rirkhaäuser (1995)Google Scholar
  3. 3.
    Osher, S., Paragios, N. (eds.): Geometric Level Set Methods in Imaging, Vision, and Graphics. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  4. 4.
    Nelson, R.C., Aloimonos, J.: Finding motion parameters from spherical flow fields (or the advantage of having eyes in the back of your head). Biological Cybernetics 58, 261–273 (1988)CrossRefGoogle Scholar
  5. 5.
    Fermüller, C., Aloimonos, J.: Ambiguity in structure from motion: sphere versus plane. IJCV 28, 137–154 (1998)CrossRefGoogle Scholar
  6. 6.
    Baker, S., Nayer, S.: A theory of single-viewpoint catadioptric image formation International Journal of Computer Vision 35, 175–196 (1999)Google Scholar
  7. 7.
    Geyer, C., Daniilidis, K.: Catadioptric projective geometry. International Journal of Computer Vision 45, 223–243 (2001)zbMATHCrossRefGoogle Scholar
  8. 8.
    Neumann, T.R.: Modeling insect compound eyes: Space-variant spherical vision. In: Bülthoff, H.H., Lee, S.-W., Poggio, T.A., Wallraven, C. (eds.) BMCV 2002. LNCS, vol. 2525, pp. 360–367. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–204 (1981)CrossRefGoogle Scholar
  10. 10.
    Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. International Journal of Computer Vision 12, 43–77 (1994)CrossRefGoogle Scholar
  11. 11.
    Imiya, A., Iwawaki, K.: Voting method for subpixel flow detection. Pattern Recognition Letters 24, 197–214 (2003)zbMATHCrossRefGoogle Scholar
  12. 12.
    Nagel, H.-H.: On the estimation of optical flow: Relations between different approaches and some new results. Artificial Intelligence 33, 299–324 (1987)CrossRefGoogle Scholar
  13. 13.
    Xu, C., Prince, J.L.: Generalized gradient vector flow external forces for active contours. Signal Processing 71, 131–139 (1998)zbMATHCrossRefGoogle Scholar
  14. 14.
    Xu, C., Prince, J.L.: Gradient vector flow: A new external force for snakes. In: Proc. CVPR 1997, pp. 66–71 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Atsushi Imiya
    • 1
  • Hironobu Sugaya
    • 2
  • Akihiko Torii
    • 2
  • Yoshihiko Mochizuki
    • 2
  1. 1.Institute of Media and Information TechnologyChiba University 
  2. 2.School of Science and TechnologyChiba UniversityChibaJapan

Personalised recommendations