Advertisement

RelView – An OBDD-Based Computer Algebra System for Relations

  • Rudolf Berghammer
  • Frank Neumann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3718)

Abstract

We present an OBDD-based Computer Algebra system for relational algebra, called RelView. After a short introduction to the OBDD-implementation of relations and the system, we exhibit its application by presenting two typical examples.

Keywords

Boolean Function Maximum Clique Computer Algebra System Relational Algebra Binary Decision Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Behnke, R., et al.: RELVIEW – A system for calculation with relations and relational programming. In: Astesiano, E. (ed.) ETAPS 1998 and FASE 1998. LNCS, vol. 1382, pp. 318–321. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Berghammer, R., Hoffmann, T.: Modelling sequences within the RelView system. J. of Univ. Comp. Sci. 7, 107–123 (2001)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Berghammer, R., Möller, B., Struth, G. (eds.): RelMiCS 2003. LNCS, vol. 3051. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  4. 4.
    Brink, C., Kahl, W., Schmidt, G. (eds.): Relational methods in computer science, Advances in Computer Science. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  5. 5.
    Bryant, R.E.: Symbolic Boolean manipulation with ordered binary decision diagrams. ACM Com. Surv. 24, 293–318 (1992)CrossRefGoogle Scholar
  6. 6.
    Davey, B.A., Priestley, H.A.: Introduction to lattices and orders. Cambridge Univ. Press, Cambridge (1991)Google Scholar
  7. 7.
    DIMACS implementation challenges (second challenge, 1992-1993), Available via, http://dimacs.rutgers.edu/Challenges/
  8. 8.
    Fahle, T.: Simple and fast: Improving a branch-and-bound algorithm for maximum clique. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 485–498. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Fronk, A.: Using relational algebra for the analysis of Petri nets in a CASE tool based approach. In: Proc. 2nd IEEE Int. Conf. on Software Engineering and Formal Methods, pp. 396–405. IEEE Press, Los Alamitos (2004)CrossRefGoogle Scholar
  10. 10.
    Leoniuk, B.: ROBDD-based implementation of relational algebra with applications (in German). Diss., Univ. Kiel (2001)Google Scholar
  11. 11.
    Milanese, U.: On the implementation of a ROBDD-based tool for the manipulation and visualization of relations (in German). Diss., Univ. Kiel (2003)Google Scholar
  12. 12.
    Schmidt, G., Ströhlein, T.: Relations and graphs. Discrete mathematics for computer scientists. EATCS Monographs on Theoret. Comp. Sci. Springer, Heidelberg (1993)zbMATHGoogle Scholar
  13. 13.
    Wegener, I.: Branching programs and binary decision diagrams: Theory and applications. SIAM Monographs on Discr. Math. and Appl., SIAM (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Rudolf Berghammer
    • 1
  • Frank Neumann
    • 1
  1. 1.Institut für Informatik und Praktische MathematikChristian-Albrechts-Universität KielKiel

Personalised recommendations