Advertisement

Hilbert Stratification and Parametric Gröbner Bases

  • Laureano Gonzalez–Vega
  • Carlo Traverso
  • Alberto Zanoni
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3718)

Abstract

In this paper we generalize a method to analyze inhomogeneous polynomial systems containing parameters. In particular, the Hilbert function is used as a tool to check that the specialization of a “generic” Gröbner basis of the parametric polynomial system (computed in a polynomial ring having both parameters and unknowns as variables) is a Gröbner basis of the specialized system. Extending the analysis, we can also build the so-called Hilbert stratification of the associated variety. We classify the possible specializations according to the value of the Hilbert function of the specialized system. Some computation examples with the PoSSoLib are reported.

Keywords and phrases

Gröbner bases Hilbert function Specialization 

AMS Subject Classification

68W30 13P10 13F20 13D40 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, W.W., Loustaunau, P.: An Introduction to Gröbner Bases. Graduate Studies in Mathematics, vol. 3. AMS, Providence (1994)zbMATHGoogle Scholar
  2. 2.
    Becker, T., Weispfenning, V.: G röbner Bases: A Computational Approach to Commutative Algebra. Graduate Studies in Mathematics, vol. 141. Springer, Heidelberg (1998)Google Scholar
  3. 3.
    Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. Springer, Heidelberg (1991) (second corrected edition, 1998)Google Scholar
  4. 4.
    Duval, D.: Evaluation dynamique et clôture algébrique. Journal of Pure and Applied Algebra 99, 267–295 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    FRISCO. A Framework for Integrated Symbolic/Numeric Computation. ESPRIT Project LTR 21024 (1996–1999); European UnionGoogle Scholar
  6. 6.
    Galligo, A., Poittier, L., Traverso, C.: Greatest Easy Common Divisor and standard basis completion algorithms. In: Gianni, P. (ed.) ISSAC 1988. LNCS, vol. 358, pp. 162–176. Springer, Heidelberg (1989)Google Scholar
  7. 7.
    Gianni, P.: Properties of Gröbner basis under specializations. In: Davenport, J.H. (ed.) ISSAC 1987 and EUROCAL 1987. LNCS, vol. 378, pp. 293–297. Springer, Heidelberg (1989)Google Scholar
  8. 8.
    Gonzalez Lopez, M.J., Gonzalez Vega, L., Traverso, C., Zanoni, A.: Gröbner Bases Specialization through Hilbert Functions: The Homogeneous Case. SIGSAM Bulletin, Communications in Computer Algebra 34(1)(131), 1–8 (2000)zbMATHGoogle Scholar
  9. 9.
    Kalkbrener, M.: On the stability of Gröbner bases under specializations. Journal of Symbolic Computation 24(1), 51–58 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kruppa, E.: Zur Ermittlung eines Objektes aus zwei Perspektiven mit innerer Orientierung. Sitz.-Ber. Akad. Wiss., Wien, math. naturw. Abt. IIa 122, 1939–1948 (1913)zbMATHGoogle Scholar
  11. 11.
    Maybank, S.J., Faugeras, O.D.: A Theory Of Self-Calibration Of A Moving Camera. IJCV 8, 123–151 (1992)CrossRefGoogle Scholar
  12. 12.
    Montes, A.: A New Algorithm for Discussing GröbnerBases with Parameters. Journal of Symbolic Computation 33(2), 183–208 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Moreno–Maza, M.: Calculs de Pgcd au–dessus des Tours d’Extensions Simples et Résolution des Systèmes d’Équations Algébriques. Doctoral Thesis, Université Paris 6 (1997)Google Scholar
  14. 14.
    Sit, W.Y.: An algorithm for solving parametric linear systems. Journal of Symbolic Computation 13, 353–394 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Traverso, C.: Hilbert Functions and the Buchberger Algorithm. Journal of Symbolic Computation 22(4), 355–376 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    van der Waerden, B.L.: Modern Algebra II, 3rd edn. F. Ungar Publishing Co., NY (1950)Google Scholar
  17. 17.
    Weispfenning, V.: Comprehensive Gröbner Bases. Journal of Symbolic Computation 14(1), 1–30 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Weispfenning, V.: Canonical Comprehensive Gröbner bases. In: Proceedings ISSAC 2002, pp. 270–276. ACM-Press, New York (2002)CrossRefGoogle Scholar
  19. 19.
    Zanoni, A.: Numerical Gröbner Bases, Tesi di dottorato. Università di Firenze (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Laureano Gonzalez–Vega
    • 1
  • Carlo Traverso
    • 2
  • Alberto Zanoni
    • 2
  1. 1.Dpto. Matemáticas, Estadística y Computación, Facultad de ScienciasUniversidad de CantabriaSantanderSpain
  2. 2.Dipartimento di Matematica “Leonida Tonelli”Università di PisaPisaItaly

Personalised recommendations