Visualizing Missing Data: Graph Interpretation User Study

  • Cyntrica Eaton
  • Catherine Plaisant
  • Terence Drizd
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3585)

Abstract

Most visualization tools fail to provide support for missing data. In this paper, we identify sources of missing data and describe three levels of impact missing data can have on the visualization: perceivable, invisible or propagating. We then report on a user study with 30 participants that compared three design variants. A between-subject graph interpretation study provides strong evidence for the need of indicating the presence of missing information, and some direction for addressing the problem.

References

  1. 1.
    Babad, Y.M., Hoffer, J.A.: Even no data has a value. Communications of the ACM 27(8), 748–756 (1984)CrossRefGoogle Scholar
  2. 2.
    Eaton, C., Plaisant, C., Drizd, T.: The Challenge of Missing and Uncertain Data. In: Poster Summary in the Visualization 2003 Conference compendium, pp. 40–41. IEEE, Los Alamitos (2003)Google Scholar
  3. 3.
    Shneiderman, B.: The Eyes Have It: A Task by Data Type Taxonomy of Information Visualizations. In: IEEE Visual Languages, pp. 336–343 (1996)Google Scholar
  4. 4.
    Chi, E.H.: A Taxonomy of Visualization Techniques Using the Data State Reference Model. In: Proceedings of IEEE Symposium on Information Visualization, pp. 69–76 (2000)Google Scholar
  5. 5.
    Olston, C., Mackinlay, J.: Visualizing Data with Bounded Uncertainty. In: Proceedings of the IEEE Symposium on Information Visualization, pp. 37–40 (2002)Google Scholar
  6. 6.
    Gershon, N.: Knowing What We Don’t Know; How to Visualize an Imperfect World. ACM SIGGRAPH Computer Graphics 33(3), 39–41 (1999)CrossRefGoogle Scholar
  7. 7.
    Howard, D., MacEachren, A.: Interface Design for Geographic Visualization: Tools for Representing Reliability. Cartography and Geographic Information Systems 23(2), 9–77 (1996)CrossRefGoogle Scholar
  8. 8.
    MacEachren, A.M., Brewer, C.A., Pickle, L.: Visualizing Georeferenced data: Representing reliability of health statistics. Environment and Planning: A 30, 1547–1561 (1998)CrossRefGoogle Scholar
  9. 9.
    Ehlschlaeger, C.: Exploring Temporal Effects in Animations Depicting Spatial Data Uncertainty (1998) Available at, http://www.geography.hunter.cuny.edu/~chuck/aag98/
  10. 10.
    Pang, A.T., Wittenbrink, C.M., Lodha, S.K.: Approaches to Uncertainty Visualization. Technical Report UCSC-CRL-96-21, University of California, Santa Cruz (1996)Google Scholar
  11. 11.
    Pham, B., Brown, R.: Visualization: An Analysis of Visualization Requirements for Fuzzy Systems. In: First International Conference on Computer Graphics and Interactive Techniques, pp. 181–187 (2003)Google Scholar
  12. 12.
    Cedlink, A., Rheingans, P.: Procedural Annotation of Uncertain Information. IEEE Visualization, 77–83 (2000)Google Scholar
  13. 13.
    Twiddy, R., Cavallo, J., Shiri, S.: Restorer: A visualization technique for handling missing data. IEEE Visualization, 212–216 (1994)Google Scholar
  14. 14.
    Djurcilov, S., Pang, A.: Visualizing Gridded Datasets with large Numbers of Missing Values. IEEE Visualization, 405–408 (1999)Google Scholar
  15. 15.
    Dybowski, R., Weller, P.: Prediction Regions for the Visualization of Incomplete Datasets. Computational Statistic 16(1), 25–41 (2001)MathSciNetMATHGoogle Scholar
  16. 16.
    Unwin, A., Hawkins, G., Hofmann, S.B.: Interactive Graphics for Data Sets with Missing Values – MANET. Journal of Computational and Graphical Statistics 5(2), 113–122 (1996)Google Scholar
  17. 17.
    Swayne, D.F., Buja, A.: Missing Data in Interactive High-Dimensional Data Visualization. Computational Statistics 13(1), 15–26 (1998)MATHGoogle Scholar
  18. 18.
    Beichner, R.: Testing Student Interpretation of Kinematics Graphs. American Journal of Physics 62, 75–762 (1994)CrossRefGoogle Scholar
  19. 19.
    Roth, W., Gervase, M.B.: When Are Graphs Worth Ten Thousand Words? An Expert-Expert Study. Cognition and Instruction 21(4), 429–473 (2003)CrossRefGoogle Scholar
  20. 20.
    Brassuer, L.: The Role of Experience and Culture in Computer Graphing and Graph Interpretive Processes. In: Proceedings of the 17th annual international conference on Computer documentation, pp. 9–15 (1999)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2005

Authors and Affiliations

  • Cyntrica Eaton
    • 1
  • Catherine Plaisant
    • 1
  • Terence Drizd
    • 1
  1. 1.Human-Computer Interaction LaboratoryUniversity of MarylandCollege ParkUSA

Personalised recommendations