Advertisement

A Synergistic Approach to Efficient Interactive Video Retrieval

  • Andreas Girgensohn
  • John Adcock
  • Matthew Cooper
  • Lynn Wilcox
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3585)

Abstract

A video database can contain a large number of videos ranging from several minutes to several hours in length. Typically, it is not sufficient to search just for relevant videos, because the task still remains to find the relevant clip, typically less than one minute of length, within the video. This makes it impor tant to direct the users attention to the most promising material and to indicate what material they already investigated. Based on this premise, we created a video search system with a powerful and flexible user interface that incorporates dynamic visualizations of the underlying multimedia objects. The system employes an automatic story segmentation, combines text and visual search, and displays search results in ranked sets of story keyframe collages. By adapting the keyframe collages based on query relevance and indicating which portions of the video have already been explored, we enable users to quickly find relevant sec tions. We tested our system as part of the NIST TRECVID interactive search evaluation, and found that our user interface enabled users to find more relevant results within the allotted time than other systems employing more sophisticated analysis techniques but less helpful user interfaces.

Keywords

Query Term Mean Average Precision Video Retrieval Video Shot Text Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Berry, M.W., Dumais, S.T., O’Brien, G.W.: Using Linear Algebra for Intelligent Information Retrieval. SIAM Review 37(4), 573–595 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Boreczky, J.S., Rowe, L.A.: Comparison of video shot boundary detection techniques. In: Proc. SPIE Storage and Retrieval for Image and Video Databases (1996)Google Scholar
  3. 3.
    Chiu, P., Girgensohn, A., Liu, Q.: Stained-Glass Visualization for Highly Condensed Video Summaries. In: Proc. IEEE Intl. Conf. on Multimedia and Expo (2004)Google Scholar
  4. 4.
    Christel, M., Moraveji, N.: Finding the Right Shots: Assessing Usability and Performance of a Digital Video Library Interface. In: Proc. ACM Multimedia, pp. 732–739 (2004)Google Scholar
  5. 5.
    Christel, M., Yang, J., Yan, R., Hauptmann, A.: Carnegie Mellon University Search. In: TREC Video Retrieval Evaluation Online Proceedings (2004)Google Scholar
  6. 6.
    Cooke, E., Ferguson, P., Gaughan, G., Gurrin, C., Jones, G.J.F., Le Borgue, H., Lee, H., Marlow, S., McDonald, K., McHugh, M., Murphy, N., O’Connor, N.E., O’Hare, N., Rothwell, S., Smeaton, A.F., Wilkins, P.: TRECVID 2004 Experiments in Dublin City University. TREC Video Retrieval Evaluation Online Proceedings (2004)Google Scholar
  7. 7.
    Cooper, M., Foote, J.: Scene Boundary Detection Via Video Self-Similarity Analysis. In: Proc. IEEE Intl. Conf. on Image Processing, pp. 378–381 (2001)Google Scholar
  8. 8.
    Girgensohn, A., Adcock, J., Cooper, M., Wilcox, L.: Interactive Search in Large Video Collections. In: CHI 2005 Extended Abstracts, pp. 1395–1398. ACM Press, New York (2005)Google Scholar
  9. 9.
    Google Video Search, http://video.google.com
  10. 10.
    Hauptmann, A.G., Christel, M.G.: Successful Approaches in the TREC Video Retrieval Evaluations. In: Proc. ACM Multimedia, pp. 668–675 (2004)Google Scholar
  11. 11.
    Heesch, D., Howarth, P., Megalhaes, J., May, A., Pickering, M., Yavlinsky, A., Ruger, S.: Video Retrieval Using Search and Browsing. TREC Video Retrieval Evaluation Online Proceedings (2004)Google Scholar
  12. 12.
    Huang, J., Kumar, S.R., Mitra, M., Zhu, W.-J., Zabih, R.: Image Indexing Using Color Cor¬relograms. In: Proc. IEEE Comp. Soc. Conf. Comp. Vis. and Patt. Rec., pp. 762–768 (1997)Google Scholar
  13. 13.
  14. 14.
    Porter, M.F.: An Algorithm for Suffix Stripping. Program 14(3), 130–137 (1980)CrossRefGoogle Scholar
  15. 15.
    Quénot, G.M., Moraru, D., Besacier, L.: CLIPS at TRECvid: Shot Boundary Detection and Feature Detection. TREC Video Retrieval Evaluation Online Proceedings (2003)Google Scholar
  16. 16.
    Salton, G., Allan, J., Buckley, C.: Approaches to passage retrieval in full text information systems. In: ACM SIGIR conference on R&D in Information Retrieval, pp. 49–58 (1993)Google Scholar
  17. 17.
    Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Information Processing and Management 24(5), 513–523 (1988)CrossRefGoogle Scholar
  18. 18.
    Snoek, C.G.M., Worring, M., Geusebroek, J.M., Koelma, D.C., Seinstra, F.J.: The MediaMill TRECVID 2004 Semantic Video Search Engine. TREC Video Retrieval Evaluation Online Proceedings (2004)Google Scholar
  19. 19.
  20. 20.
    Yahoo! Video Search, http://video.search.yahoo.com

Copyright information

© IFIP International Federation for Information Processing 2005

Authors and Affiliations

  • Andreas Girgensohn
    • 1
  • John Adcock
    • 1
  • Matthew Cooper
    • 1
  • Lynn Wilcox
    • 1
  1. 1.FX Palo Alto LaboratoryPalo AltoUSA

Personalised recommendations