Advertisement

A New Structural Attack for GPT and Variants

  • Raphael Overbeck
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3715)

Abstract

In this paper we look at the Gabidulin version of the McEliece cryptosystem (GPT) and its variants. We propose a new polynomial time attack, which recovers an alternative private key. Our attack is applicable to all variants proposed so far and breaks some of them completely.

Keywords

public key cryptography code based cryptography rank distance codes Gabidulin codes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berger, T.P., Loidreau, P.: How to mask the structure of codes for a cryptographic use. Designs, Codes and Cryptography 35(1) (2005)Google Scholar
  2. 2.
    Berger, T.P., Loidreau, P.: Security of the Niederreiter form of the GPT public-key cryptosystem. In: IEEE International Symposium on Information Theory, Lausanne, Suisse. IEEE, Los Alamitos (2002)Google Scholar
  3. 3.
    Gabidulin, E.M., Ourivski, A.V.: Column scrambler for the GPT cryptosystem. Discrete Applied Mathematics 128(1), 207–221 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Gabidulin, E.M.: On public-key cryptosystems based on linear codes. In: Proc. of 4th IMA Conference on Cryptography and Coding 1993, Codes and Ciphers. IMA Press (1995)Google Scholar
  5. 5.
    Gabidulin, E.M., Loidreau, P.: Subfield subcodes of maximum-rank distance codes. In: Seventh International Workshop on Algebraic and Combinatorial Coding Theory. ACCT, vol. 7, pp. 151–156 (2000)Google Scholar
  6. 6.
    Gabidulin, E.M., Ourivski, A.V., Honary, B., Ammar, B.: Reducible rank codes and their applications to cryptography. IEEE Transactions on Information Theory 49(12), 3289–3293 (2003)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Gabidulin, E.M., Paramonov, A.V., Tretjakov, O.V.: Ideals over a non-commutative ring and their applications to cryptography. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 482–489. Springer, Heidelberg (1991)Google Scholar
  8. 8.
    Gibson, K.: The security of the Gabidulin public key cryptosystem. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 212–223. Springer, Heidelberg (1996)Google Scholar
  9. 9.
    Johansson, T., Ourivski, A.V.: New technique for decoding codes in the rank metric and its cryptography applications. Problems of Information Transmission 38(3), 237–246 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Ourivski, A.V.: Recovering a parent code for subcodes of maximal rank distance codes. In: Proc. of WCC 2003, pp. 357–363 (2003)Google Scholar
  11. 11.
    Overbeck, R.: Extending Gibson’s attacks on the GPT cryptosystem. In: Proc. of WCC 2005, pp. 382–391 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Raphael Overbeck
    • 1
  1. 1.Department of Computer Science, Cryptography and Computer Algebra GroupGK Electronic Commerce, TU-Darmstadt 

Personalised recommendations