Advertisement

Homomorphic Cryptosystems Based on Subgroup Membership Problems

  • Kristian Gjøsteen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3715)

Abstract

We define an abstract subgroup membership problem, and derive a number of general results for subgroup membership problems. We define an homomorphic public key cryptosystem based essentially on a subgroup membership problem, and show that this abstract construction gives a uniform description of many famous cryptosystems, such as ElGamal, Goldwasser-Micali and Paillier. We show that the abstract theory gives new insights into older results, and allows us to derive new results.

Keywords

public key encryption homomorphic cryptosystems subgroup membership problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benaloh, J.: Dense probabilistic encryption. In: Proceedings of the Workshop on Selected Areas of Cryptography, pp. 128–129 (1994)Google Scholar
  2. 2.
    Boneh, D.: The Decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Burmester, M., Desmedt, Y., Piper, F., Walker, M.: A General Zero-Knowledge Scheme (Extended Abstract). In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 122–133. Springer, Heidelberg (1990)Google Scholar
  4. 4.
    Catalano, D., Gennaro, R., Howgrave-Graham, N.: The bit security of Paillier’s encryption scheme and its applications. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 229–243. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Damgård, I., Jurik, M.: A generalisation, a simplification and some applications of Paillier’s probabilistic public-key system. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information Theory 22, 644–654 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory 31, 469–472 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Sciences 28, 270–299 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Joux, A.: A one round protocol for tripartite Diffie-Hellman. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Naccache, D., Stern, J.: A new public key cryptosystem based on higher residues. In: Nyberg [12], pp. 308–318Google Scholar
  12. 12.
    Nyberg, K. (ed.): EUROCRYPT 1998. LNCS, vol. 1403. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  13. 13.
    Okamoto, T., Uchiyama, S.: A new public-key cryptosystem as secure as factoring. In: Nyberg [12], pp. 308–318Google Scholar
  14. 14.
    Paillier, P.: Public-key cryptosystems based on composite degree residue classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Kristian Gjøsteen
    • 1
  1. 1.Department of TelematicsNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations