Advanced Slide Attacks Revisited: Realigning Slide on DES

  • Raphael C. -W. Phan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3715)


Slide attacks are powerful tools that enable the cryptanalyst to break ciphers with up to 4-round self-similarity. This paper introduces an advanced sliding technique that breaks ciphers with self-similarity more than 4 rounds, and even allows for sliding encryptions with dissimilar rounds in the middle of the slide. In particular, we present the realigning slide attack on variants of 14-, 15- and full 16-round DES. We hope our results will spur more effort into ways to extend the slide attacks to apply to larger classes of block ciphers with complex key schedules.


Block Cipher Shift Pattern Round Function Linear Cryptanalysis Fast Software Encryption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. Journal of Cryptology 4(1), 3–72 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Biham, E.: New Types of Cryptanalytic Attacks Using Related Keys. Journal of Cryptology 7, 229–246 (1994)zbMATHCrossRefGoogle Scholar
  3. 3.
    Biryukov, A.: Methods of Cryptanalysis. Ph.D. Dissertation, Technion, Israel (1999)Google Scholar
  4. 4.
    Biryukov, A., Phan, R.C.-W.: Extended Slide Attacks − Double and Realigning Slides (2002) (unpublished manuscript)Google Scholar
  5. 5.
    Biryukov, A., Wagner, D.: Slide Attacks. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 245–259. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Biryukov, A., Wagner, D.: Advanced Slide Attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 589–606. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Furuya, S.: Slide Attacks with a Known-Plaintext Cryptanalysis. In: Kim, K.-c. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 214–225. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Handschuh, H., Naccache, D.: SHACAL. Submission to the NESSIE project (2000), Available from
  9. 9.
    Handschuh, H., Naccache, D.: SHACAL: A Family of Block Ciphers. Submission to the NESSIE project (2002), Available from
  10. 10.
    Kavut, S., Yücel, M.D.: Slide Attack on Spectr-H64. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002. LNCS, vol. 2551, pp. 34–47. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Kelsey, J., Schneier, B., Wagner, D.: Key-Schedule Cryptanalysis of IDEA, G-DES, GOST, SAFER, and Triple-DES. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 237–251. Springer, Heidelberg (1996)Google Scholar
  12. 12.
    Kelsey, J., Schneier, B., Wagner, D.: Related-Key Cryptanalysis of 3-WAY, Biham-DES, CAST, DES-X, NewDES, RC2 and TEA. In: Han, Y., Quing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 233–246. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  13. 13.
    Kilian, J., Rogaway, P.: How to Protect DES Against Exhaustive Key Search. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 252–267. Springer, Heidelberg (1996)Google Scholar
  14. 14.
    Kilian, J., Rogaway, P.: How to Protect DES Against Exhaustive Key Search (an Analysis of DESX). Journal of Cryptology 14(1), 17–35 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Knudsen, L.R.: New Potentially ‘Weak’ Keys for DES and LOKI (Extended abstract). In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 419–424. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  16. 16.
    Knudsen, L.R.: Block Ciphers − Analysis, Design and Applications. PhD Thesis, Aarhus University, Denmark (1994)Google Scholar
  17. 17.
    Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)Google Scholar
  18. 18.
    NBS: Data Encryption Standard, Federal Information Processing Standard (FIPS), Publication 46, U.S. Dept. of Commerce, Washington D.C. (January 1977)Google Scholar
  19. 19.
    Onions, P.: On the Strength of Simply-Iterated Feistel Ciphers with Whitening Keys. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 63–69. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Phan, R.C.-W., Furuya, S.: Sliding Properties of the DES Key Schedule and Potential Extensions to the Slide Attacks. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 138–148. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Saarinen, M.-J.O.: Cryptanalysis of Block Ciphers Based on SHA-1 and MD5. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 36–44. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    Wagner, D.: A Slide Attack on SHA-1 (unpublished manuscript) (June 4, 2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Raphael C. -W. Phan
    • 1
  1. 1.Information Security Research (iSECURES) LabSwinburne University of Technology (Sarawak Campus)Kuching, SarawakMalaysia

Personalised recommendations