Determining the Variation Degree of Feature Models

  • Thomas von der Maßen
  • Horst Lichter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3714)


When developing a product line the knowledge about the variation de gree is of vital importance for development, maintenance and evolution of a prod uct line. In this paper we focus on the variation degree of product line feature models, considering different types of variability and dependency relationships between features.


Product Line Feature Model Cell Phone Variation Degree Child Feature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kang, K.C., et al.: Feature-Oriented Domain Analysis (FODA) Feasibility Study, Technical report CMU/SEI-90-TR-021, Software Engineering Institute, Carnegie Mellon University (2000)Google Scholar
  2. 2.
    Lichter, H., Nyßen, A., von der Maßen, T., Weiler, T.: Vergleich von Ansätzen zur Feature Modellierung bei der Softwareproduktlinienentwicklung, Aachener Informatik Berichte, Aachen (2003)Google Scholar
  3. 3.
    von der Massen, T., Lichter, H.: Deficiencies in Feature Models, In: Proceedings of the Software Variability Management for Product Derivation - Towards Tool Support, International Workshop of SPLC 2004, Boston (2004)Google Scholar
  4. 4.
    Eisenecker, U., Selbig, M., Blinn, F., Czarnecki, K.: Merkmalmodellierung für Softwaresystemfamilien. ObjectSpektrum 5, 23–30 (2001)Google Scholar
  5. 5.
    van Deursen, A., Klint, P.: Domain-Specific Language Design Requires Feature Descriptions. Journal of Computing and Information Technology (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Thomas von der Maßen
    • 1
  • Horst Lichter
    • 1
  1. 1.Research Group Software ConstructionRWTH Aachen University 

Personalised recommendations