Advertisement

Consistency of Variable Splitting in Free Variable Systems of First-Order Logic

  • Roger Antonsen
  • Arild Waaler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3702)

Abstract

We prove consistency of a sequent calculus for classical logic with explicit splitting of free variables by means of a semantical soundness argument. The free variable system is a mature formulation of the system proposed at TABLEAUX 2003 [1]. We also identify some challenging and interesting open research problems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Waaler, A., Antonsen, R.: A free variable sequent calculus with uniform variable splitting. In: Cialdea Mayer, M., Pirri, F. (eds.) TABLEAUX 2003, vol. 2796, pp. 214–229. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Bibel, W.: Automated Theorem Proving, 2nd edn. Vieweg Verlag (1987)Google Scholar
  3. 3.
    Antonsen, R.: Uniform variable splitting. In: Contributions to the Doctoral Programme of the Second International Joint Conference on Automated Reasoning (IJCAR 2004). CEUR Workshop Proceedings, Cork, Ireland, July 04-July 08, 2004. Vol. 106, pp. 1–5 (2004), Online: http://ceur-ws.org/Vol-106/01-antonsen.pdf
  4. 4.
    Wallen, L.A.: Automated deduction in nonclassical logics. MIT Press, Cambridge (1990)Google Scholar
  5. 5.
    Hähnle, R.: Tableaux and related methods. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, pp. 100–178. Elsevier Science, Amsterdam (2001)Google Scholar
  6. 6.
    Letz, R.: Clausal tableaux. In: Bibel, W., Schmidt, P.H. (eds.) Automated Deduction: A Basis for Applications. Foundations: Calculi and Methods, vol. I. Kluwer Academic Publishers, Dordrecht (1998)Google Scholar
  7. 7.
    Letz, R., Stenz, G.: Universal variables in disconnection tableaux. In: Cialdea Mayer, M., Pirri, F. (eds.) TABLEAUX 2003, vol. 2796, pp. 117–133. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Giese, M.: Incremental Closure of Free Variable Tableaux. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 545–560. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Hansen, C.M.: Incremental Proof Search in the Splitting Calculus. Master’s thesis, Dept. of Informatics, University of Oslo (2004)Google Scholar
  10. 10.
    Antonsen, R.: Free variable sequent calculi. Master’s thesis, University of Oslo, Language, Logic and Information, Department of Linguistics (2003)Google Scholar
  11. 11.
    Smullyan, R.M.: First-Order Logic. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 43. Springer, Heidelberg (1968)zbMATHGoogle Scholar
  12. 12.
    Waaler, A.: Connections in nonclassical logics. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. II, pp. 1487–1578. Elsevier Science, Amsterdam (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Roger Antonsen
    • 1
  • Arild Waaler
    • 1
    • 2
  1. 1.Department of InformaticsUniversity of OsloNorway
  2. 2.Finnmark CollegeAltaNorway

Personalised recommendations