Advertisement

The ILTP Library: Benchmarking Automated Theorem Provers for Intuitionistic Logic

  • Thomas Raths
  • Jens Otten
  • Christoph Kreitz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3702)

Abstract

The Intuitionistic Logic Theorem Proving (ILTP) Library provides a platfom for testing and benchmarking theorem provers for first-order intuitionistic logic. It includes a collection of benchmark problems in a standardised syntax and performance results obtained by a comprehensive test of currently available intuitionistic theorem proving systems. These results are used to provide information about the status and the difficulty rating of the benchmark problems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balsiger, P., Heuerding, A., Schwendimann, S.: Logics workbench 1.0. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS (LNAI), vol. 1397, pp. 35–37. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Bertot, Y., Castéran, P.: Interactive theorem proving and program development. Texts in Theoretical Computer Science. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  3. 3.
    Constable, R.L., et al: Implementing mathematics with the NuPRL proof development system. Prentice Hall, Englewood Cliffs (1986)Google Scholar
  4. 4.
    Larchey-Wendling, D., Méry, D., Galmiche, D.: STRIP: Structural sharing for efficient proof-search. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 696–700. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Otten, J.: ileantap: An intuitionistic theorem prover. In: Galmiche, D. (ed.) TABLEAUX 1997. LNCS (LNAI), vol. 1227, pp. 307–312. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  6. 6.
    Otten, J.: Clausal connection-based theorem proving in intuitionistic first-order logic. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 245–261. Springer, Heidelberg (2005), http://www.leancop.de CrossRefGoogle Scholar
  7. 7.
    Raths, T.: Evaluating intuitionistic automated theorem provers. Technical Report, University of Potsdam (2005)Google Scholar
  8. 8.
    Sahlin, D., Franzen, T., Haridi, S.: An intuitionistic predicate logic theorem prover. Journal of Logic and Computation 2, 619–656 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Schmitt, S., et al.: JProver: Integrating connection-based theorem proving into interactive proof assistants. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 421–426. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Sutcliffe, G., Suttner, C.: The TPTP problem library - CNF release v1.2.1. Journal of Automated Reasoning 21, 177–203 (1998), http://www.cs.miami.edu/~tptp zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Tammet, T.: A resolution theorem prover for intuitionistic logic. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS (LNAI), vol. 1104, pp. 2–16. Springer, Heidelberg (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Thomas Raths
    • 1
  • Jens Otten
    • 1
  • Christoph Kreitz
    • 1
  1. 1.Institut für InformatikUniversity of PotsdamPotsdam-BabelsbergGermany

Personalised recommendations