LoTREC: Logical Tableaux Research Engineering Companion

  • Olivier Gasquet
  • Andreas Herzig
  • Dominique Longin
  • Mohamad Sahade
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3702)


In this paper we describe a generic tableaux system for building models or counter-models and testing satisfiability of formulas in modal and description logics. This system is called LoTREC2.0. It is characterized by a high-level language for tableau rules and strategies. It aims at covering all Kripke-semantic based logics. It is implemented in Java and characterized by a user-friendly graphical interface. It can be used as a learning system for possible worlds semantics and tableaux based proof methods.


Modal Logic Theorem Prover Description Logic Linear Temporal Logic World Semantic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cerro, F.D., Fauthoux, D., Gasquet, O., Herzig, A., Longin, D.: Lotrec: the generic tableau prover for modal and description logics. In: APN 2001. LNCS, pp. 453–458. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Sahade, M.: LoTREC: User Manuel available at: LoTREC2.0 home pageGoogle Scholar
  3. 3.
    Massacci, F.: Single step tableaux for modal logics: methodology, computations, algorithms. JAR 24(3), 319–364 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Castilho, M., Fariñas del Cerro, L., Gasquet, O., Herzig, A.: Modal tableaux with propagation rules and structural rules. Fund. Inf. 32(3), 281–297 (1997)zbMATHGoogle Scholar
  5. 5.
    Fariñas del Cerro, L., Gasquet, O.: Tableaux Based Decision Procedures for Modal Logics of Confluence and Density. Fund. Inf. 40(4), 317–333 (1999)zbMATHGoogle Scholar
  6. 6.
    Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expressive description logics. Log. J. of the IGPL 8(3), 239–263 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Horrocks, I., Patel-Schneider, P.F.: Optimizing description logic subsumption. JLC 9(3), 267–293 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Heuerding, A.: LWB theory,
  9. 9.
    Abate, P., Gore, R.: System Description: The Tableaux Work BenchGoogle Scholar
  10. 10.
    Giunchiglia, E., Giunchiglia, F., Sebastiani, R., Tacchella, A.: Sat vs. translation based decision procedures for modal logics: a comparative evaluation. JANCL 10(2), 145–173 (2000)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Hustadt, U., Schmidt, R.A.: MSPASS: Modal Reasoning by translation and first-order Resolution. In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS (LNAI), vol. 1847, pp. 67–71. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Paulson, L.C.: Isabelle: A Generic Theorem Prover. LNCS, vol. 828. Springer, Heidelberg (1994)zbMATHCrossRefGoogle Scholar
  13. 13.
    Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification system. In: Kapur, D. (ed.) CADE 1992. LNCS (LNAI), vol. 607, pp. 748–752. Springer, Heidelberg (1992)Google Scholar
  14. 14.
    Horrocks, I., Patel-Schnieder, P.K.: Optimising propositional modal satisfiability for discription logic subsumption. In: Calmet, J., Plaza, J. (eds.) AISC 1998. LNCS, vol. 1476, p. 234. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  15. 15.
    Gasquet, O., Herzig, A., Sahade, M.: Programming Modal Tableaux Systems (Submited to Tableaux05)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Olivier Gasquet
    • 1
  • Andreas Herzig
    • 1
  • Dominique Longin
    • 1
  • Mohamad Sahade
    • 1
  1. 1.IRITUniversité Paul SabatierToulouseFrance

Personalised recommendations