Advertisement

Clausal Connection-Based Theorem Proving in Intuitionistic First-Order Logic

  • Jens Otten
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3702)

Abstract

We present a clausal connection calculus for first-order intuitionistic logic. It extends the classical connection calculus by adding prefixes that encode the characteristics of intuitionistic logic. Our calculus is based on a clausal matrix characterisation for intuitionistic logic, which we prove correct and complete. The calculus was implemented by extending the classical prover leanCoP. We present some details of the implementation, called ileanCoP, and experimental results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beckert, B., Posegga, J.: lean \(T^{\!\!\textstyle A}\!\!P\): lean, tableau-based theorem proving. In: Bundy, A. (ed.) CADE 1994. LNCS (LNAI), vol. 814, pp. 793–797. Springer, Heidelberg (1994)Google Scholar
  2. 2.
    Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development. In: Texts in Theoretical Computer Science. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Bibel, W.: Matings in matrices. Communications of the ACM 26, 844–852 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bibel, W.: Automated Theorem Proving, 2nd edn. Vieweg (1987)Google Scholar
  5. 5.
    Constable, R.L., et al: Implementing Mathematics with the NuPRL proof development system. Prentice Hall, Englewood Cliffs (1986)Google Scholar
  6. 6.
    Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. Journal of Symbolic Logic 57, 795–807 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Fitting, M.C.: First-Order Logic and Automated Theorem Proving. Springer, Heidelberg (1990)zbMATHGoogle Scholar
  8. 8.
    Gentzen, G.: Untersuchungen über das logische Schließen. Mathematische Zeitschrift 39, 176–210, 405–431 (1935)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Hähnle, R., Schmitt, P.: The Liberalized δ-rule in free variable semantic tableaux. Journal of Automated Reasoning 13, 211–221 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kreitz, C., Mantel, H., Otten, J., Schmitt, S.: Connection-based proof construction in linear logic. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp. 207–221. Springer, Heidelberg (1997)Google Scholar
  11. 11.
    Kreitz, C., Otten, J.: Connection-based theorem proving in classical and non-classical logics. Journal of Universal Computer Science 5, 88–112 (1999)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Letz, R., Schumann, J., Bayerl, S., Bibel, W.: Setheo: A high-performance theorem prover. Journal of Automated Reasoning 8, 183–212 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Letz, R., Stenz, G.: Model elimination and connection tableau procedures. In: Handbook of Automated Reasoning, pp. 2015–2114. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  14. 14.
    Loveland, D.: Mechanical theorem proving by model elimination. JACM 15, 236–251 (1968)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Mantel, H., Otten, J.: linTAP: A tableau prover for linear logic. In: Murray, N.V. (ed.) TABLEAUX 1999. LNCS (LNAI), vol. 1617, pp. 217–231. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Martelli, A., Montanari, U.: An efficient unification algorithm. ACM Transactions on Programming Languages and Systems (TOPLAS) 4, 258–282 (1982)zbMATHCrossRefGoogle Scholar
  17. 17.
    McCune, W.: Otter 3.0 reference manual and guide. Technical Report ANL-94/6, Argonne National Laboratory (1994)Google Scholar
  18. 18.
    Ohlbach, H.J., et al.: Encoding two-valued nonclassical logics in classical logic. In: Handbook of Automated Reasoning, pp. 1403–1486. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  19. 19.
    Otten, J., Bibel, W.: leanCoP: lean connection-based theorem proving. Journal of Symbolic Computation 36, 139–161 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Otten, J., Kreitz, C.: T-string-unification: unifying prefixes in non-classical proof methods. In: Miglioli, P., Moscato, U., Ornaghi, M., Mundici, D. (eds.) TABLEAUX 1996. LNCS (LNAI), vol. 1071, pp. 244–260. Springer, Heidelberg (1996)Google Scholar
  21. 21.
    Otten, J., Kreitz, C.: A uniform proof procedure for classical and non-classical logics. In: Görz, G., Hölldobler, S. (eds.) KI 1996. LNCS (LNAI), vol. 1137, pp. 307–319. Springer, Heidelberg (1996)Google Scholar
  22. 22.
    Otten, J.: ileantap: An intuitionistic theorem prover. In: Galmiche, D. (ed.) TABLEAUX 1997. LNCS (LNAI), vol. 1227, pp. 307–312. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  23. 23.
    Raths, T., Otten, J., Kreitz, C.: The ILTP library: benchmarking automated theorem provers for intuitionistic logic. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS, vol. 3702, pp. 333–337. Springer, Heidelberg (2005), http://www.iltp.de CrossRefGoogle Scholar
  24. 24.
    Sahlin, D., Franzen, T., Haridi, S.: An intuitionistic predicate logic theorem prover. Journal of Logic and Computation 2, 619–656 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Schmitt, S., et al: JProver: Integrating connection-based theorem proving into interactive proof assistants. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 421–426. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  26. 26.
    Schmitt, S., Kreitz, C.: Converting non-classical matrix proofs into sequent-style systems. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996, vol. 1104, pp. 2–16. Springer, Heidelberg (1996)Google Scholar
  27. 27.
    Sutcliffe, G., Suttner, C.: The TPTP problem library - CNF release v1.2.1. Journal of Automated Reasoning 21, 177–203 (1998), http://www.cs.miami.edu/~tptp zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Tammet, T.: A resolution theorem prover for intuitionistic logic. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS (LNAI), vol. 1104, pp. 2–16. Springer, Heidelberg (1996)Google Scholar
  29. 29.
    Waaler, A.: Connections in nonclassical logics. In: Handbook of Automated Reasoning, pp. 1487–1578. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  30. 30.
    Wallen, L.: Automated deduction in nonclassical logic. MIT Press, Cambridge (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jens Otten
    • 1
  1. 1.Institut für InformatikUniversity of PotsdamPotsdam-BabelsbergGermany

Personalised recommendations