From Links to Meaning: A Burglary Data Case Study

  • Giles Oatley
  • John Zeleznikow
  • Richard Leary
  • Brian Ewart
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3684)


Our central aim is the development of decision support systems for purposes such as profiling single and series of crimes or offenders, and matching and predicting crimes. This paper presents research in this area for the high-volume crime of Burglary Dwelling House, examining the operational use of networks and the metric of brokerage from the social network analysis literature. Our work builds upon several years of experimentation using forensic psychology guided exploratory techniques from artificial intelligence, statistics and spatial statistics.


Criminal Activity Forensic Psychology Link Mining Brokerage Network Social Network Analysis Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    AIT, 2005. Homepage of Advanced Information Technologies. Online, accessed 5 January 2005, Available at:
  2. 2.
    Batagelj, V., Mrvar, A.: Pajek – Analysis and Visualization of Large Networks. In: Junger, M., Mutzel, P. (eds.) Graph Drawing Software. Mathematics and Visualization, pp. 77–103. Springer, Heidelberg (2003) ISBN 3-540-00881-0Google Scholar
  3. 3.
    Ewart, B.W., Oatley, G.C., Burn, K.: Matching Crimes Using Burglars. Modus Operandi: A Test of Three Models (2004) (forthcoming)Google Scholar
  4. 4.
    Getoor, L.: Link mining: a new data mining challenge. In: Dzeroski, S., De Raedt, L. (eds.) SIGKDD Explorations Special Issue on Multi-Relational Data Mining, July 2003, vol. 5(1), pp. 84–90 (2003)Google Scholar
  5. 5.
    Goldberg, H.G., Wong, R.W.H.: Restructuring Transactional Data for Link Analysis in the FinCEN AI System. In: Jensen, D., Goldberg, H. (eds.) Artificial Intelligence and Link analysis. Papers from the AAAI Fall Symposium, Orlando, Florida, Tech report FS-98-01 (1998)Google Scholar
  6. 6.
    Hauck, R., Atabakhsh, H., Onguasith, P., Gupta, H., Chen, H.: Using Coplink to Analyse Criminal-Justice Data. IEEE Computer 35, 30–37 (2002)Google Scholar
  7. 7.
    Horn, R.D., Birdwell, J.D., Leedy, L.W.: Link discovery tool. In: Proceedings of the Counterdrug Technology Assessment Center’s ONDCP/CTAC International Symposium, Chicago, IL, August 18-22 (1997)Google Scholar
  8. 8.
    I2 (2004). Investigative Analysis Software home page. [Online, accessed 2004], Available:
  9. 9.
    Johnson, S.D., Bowers, K.J.: The burglary as a clue to the future: the beginnings of prospective hot-spotting. The European Journal of Criminology 1(2), 237–255 (2004)CrossRefGoogle Scholar
  10. 10.
    Klerks, P.: The Network Paradigm Applied to Criminal Organisations: Theoretical nitpicking or a relevant doctrine for investigators? Recent developments in the Netherlands. Connections 24(3), 53–65 (2001)Google Scholar
  11. 11.
    Leary, R.M.: Home Office Policing & Reducing Crime Unit. (2001) Evaluation of the Impact of the FLINTS Software System in West Midlands and Elsewhere. Home Office, London (2001)Google Scholar
  12. 12.
    Lyons, D., Tseytin, G.S.: Phenomenal data mining and link analysis. In: Jensen, D., Henry Goldberg, C. (eds.) Artificial Intelligence and Link Analysis, 1998 Fall Symposium, pp. 68–75. AAAI Press, Menlo Park (1998)Google Scholar
  13. 13.
    Merry, S.: Crime Analysis: Principles for Analysing Everyday Serial Crime. In: Canter, D., Alison, L. (eds.) Profiling Property Crimes, pp. 297–315. Ashgate Publishing Co. (2000)Google Scholar
  14. 14.
    Oatley, G.C., Ewart, B.W.: Crimes Analysis Software: ‘Pins in Maps’, Clustering and Bayes Net Prediction. Expert Systems with Applications 25(4), 569–588 (2003)CrossRefGoogle Scholar
  15. 15.
    Oatley, G.C., Zeleznikow, J., Ewart, B.W.: Matching and Predicting Crimes. In: Macintosh, A., Ellis, R., Allen, T. (eds.) Applications and Innovations in Intelligent Systems XII. Proceedings of AI2004, The Twenty-fourth SGAI International Conference on Knowledge Based Systems and Applications of Artificial Intelligence, pp. 19–32. Springer, Heidelberg (2004) ISBN 1-85233-908-XGoogle Scholar
  16. 16.
    Rossmo, K.: Geographic Profiling. CRC Press, Boca Raton (1999) ISBN: 0849381290Google Scholar
  17. 17.
    Washio, T., Motoda, H.: State of the Art of Graph-based Data Mining. In: Dzeroski, S., De Raedt, L. (eds.) SIGKDD Explorations Special Issue on Multi-Relational Data Mining, July 2003, vol. 5(1), pp. 59–69 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Giles Oatley
    • 1
  • John Zeleznikow
    • 2
  • Richard Leary
    • 3
  • Brian Ewart
    • 4
  1. 1.School of Computing and TechnologyUniversity of SunderlandSunderlandUK
  2. 2.School of Information SystemsVictoria UniversityAustralia
  3. 3.Department of Statistical ScienceUniversity College LondonLondonUK
  4. 4.Division of PsychologyUniversity of SunderlandSunderlandUK

Personalised recommendations