On Engineering Smart Systems

  • E. V. Krishnamurthy
  • V. Kris Murthy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3683)


A smart system exhibits the four important properties: (i) Interactive, collective, coordinated and efficient Operation (ii) Self -organization and emergence (iii) Power law scaling under emergence (iv) Adaptive. We describe the role of fractal and percolation models for understanding smart systems. A hierarchy based on metric entropy is suggested among the computational systems to differentiate ordinary system from the smart system. Engineering a general purpose smart system is not feasible, since emergence is a global behaviour (or a goal) that evolves from the local behaviour (goals) of components. This is due to the fact that the evolutionary rules for the global goal is non-computable, as it cannot be expressed as a finite composition of computable function of local goals for any arbitrary problem domain.


Fractal Dimension Lyapunov Exponent Genetic Programming Critical Exponent Local Goal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abelson, H., et al.: Amorphous computing. Comm. ACM 43(5), 74–82 (2000)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Boettcher, S., Percus, A.: Nature.s way of Optimizing. Artificial Intelligence 119, 275–286 (2000)zbMATHCrossRefGoogle Scholar
  3. 3.
    Bunde, A., Havlin, S.: Fractals in Science. Springer, New York (1994)zbMATHGoogle Scholar
  4. 4.
    Camazine, S., et al.: Self-Organization in Biological Systems. Princeton University Press, Princeton (2002)Google Scholar
  5. 5.
    Chaitin, G.: Two-philosophical applications of Algorithmic Information Theory. In: Calude, C.S., Dinneen, M.J., Vajnovszki, V. (eds.) DMTCS 2003. LNCS, vol. 2731, pp. 1–10. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Conrad, M.: Molecular Computing. Advances in Computers 31, 235–325 (1990)CrossRefGoogle Scholar
  7. 7.
    Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of Networks. Oxford University Press, Oxford (2003)zbMATHCrossRefGoogle Scholar
  8. 8.
    Ebeling, W., Schweitzer, F.: Self-organization, Active Brownian dynamics and biological Applications. Nova Acta Leopoldina 88(332), 169–188 (2003)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Falcioni, M., et al.: Kolmogorov.s legacy about entropy. In: Chaos and Complexity. Lecture Notes in Physics, vol. 636, pp. 85–108. Springer, New York (2003)Google Scholar
  10. 10.
    Falconer, K.: Fractal geometry. Wiley, New York (2003)zbMATHCrossRefGoogle Scholar
  11. 11.
    Grimmett, G.: Percolation. Springer, New York (1999)zbMATHGoogle Scholar
  12. 12.
    Holland, J.H.: Emergence-chaos to Order. Addison Wesley, Reading (1998)Google Scholar
  13. 13.
    Hubermann, B.A., Hogg, T.: Phase transitions in Artificial Intelligence Systems. Artificial Intelligence 33, 155–171 (1987)CrossRefGoogle Scholar
  14. 14.
    Koza, R., et al.: Genetic programming III. Morgan Kaufmann, San Francisco (1999)zbMATHGoogle Scholar
  15. 15.
    Langton, C.E., et al.: Life at the Edge of chaos, in Artificial Life II, pp. 41–91. Addison Wesley, Reading (1992)Google Scholar
  16. 16.
    Liebovitch, L.S.: Fractals and Chaos. Oxford University Press, Oxford (1998)zbMATHGoogle Scholar
  17. 17.
    Mamei, M., Zambonelli, F.: Spray computers: Frontiers of self organization and Pervasive computing (2004),
  18. 18.
    Mithen, S.: The Prehistory of Mind. Thames and Hudson, London (1999)Google Scholar
  19. 19.
    Ott, E., et al.: Coping with Chaos. John Wiley, New York (1994)zbMATHGoogle Scholar
  20. 20.
    Prigogine, I.: From being to becoming. H. Freeman and Co., San Francisco (1980)Google Scholar
  21. 21.
    Prigogine, I.: Laws of Nature. Physica A 263, 528–539 (1999)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Rose, M.R., Lauder, G.V.: Adapatation. Academic Press, New York (1996)Google Scholar
  23. 23.
    Serugendo, G.D.M.: Engineering Emergent Behaviour: A Vision. In: MABS 2003. LNCS, vol. 2927, pp. 1–7. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  24. 24.
    West, B.J.: Fractal Physiology and chaos in Medicine. World Scientific, Singapore (1990)zbMATHGoogle Scholar
  25. 25.
    Wolfram, S.: A New kind of Science. Wolfram Media Inc., Champaign (2002)zbMATHGoogle Scholar
  26. 26.
    Zak, M., et al.: From Instability to Intelligence. Springer, New York (1997)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • E. V. Krishnamurthy
    • 1
  • V. Kris Murthy
    • 2
  1. 1.Computer Sciences LaboratoryAustralian National UniversityCanberraAustralia
  2. 2.School of Business Information TechnologyR.M.I.T UniversityMelbourneAustralia

Personalised recommendations