Abstract

A smart system exhibits the four important properties: (i) Interactive, collective, coordinated and efficient Operation (ii) Self -organization and emergence (iii) Power law scaling under emergence (iv) Adaptive. We describe the role of fractal and percolation models for understanding smart systems. A hierarchy based on metric entropy is suggested among the computational systems to differentiate ordinary system from the smart system. Engineering a general purpose smart system is not feasible, since emergence is a global behaviour (or a goal) that evolves from the local behaviour (goals) of components. This is due to the fact that the evolutionary rules for the global goal is non-computable, as it cannot be expressed as a finite composition of computable function of local goals for any arbitrary problem domain.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abelson, H., et al.: Amorphous computing. Comm. ACM 43(5), 74–82 (2000)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Boettcher, S., Percus, A.: Nature.s way of Optimizing. Artificial Intelligence 119, 275–286 (2000)MATHCrossRefGoogle Scholar
  3. 3.
    Bunde, A., Havlin, S.: Fractals in Science. Springer, New York (1994)MATHGoogle Scholar
  4. 4.
    Camazine, S., et al.: Self-Organization in Biological Systems. Princeton University Press, Princeton (2002)Google Scholar
  5. 5.
    Chaitin, G.: Two-philosophical applications of Algorithmic Information Theory. In: Calude, C.S., Dinneen, M.J., Vajnovszki, V. (eds.) DMTCS 2003. LNCS, vol. 2731, pp. 1–10. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Conrad, M.: Molecular Computing. Advances in Computers 31, 235–325 (1990)CrossRefGoogle Scholar
  7. 7.
    Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of Networks. Oxford University Press, Oxford (2003)MATHCrossRefGoogle Scholar
  8. 8.
    Ebeling, W., Schweitzer, F.: Self-organization, Active Brownian dynamics and biological Applications. Nova Acta Leopoldina 88(332), 169–188 (2003)MathSciNetMATHGoogle Scholar
  9. 9.
    Falcioni, M., et al.: Kolmogorov.s legacy about entropy. In: Chaos and Complexity. Lecture Notes in Physics, vol. 636, pp. 85–108. Springer, New York (2003)Google Scholar
  10. 10.
    Falconer, K.: Fractal geometry. Wiley, New York (2003)MATHCrossRefGoogle Scholar
  11. 11.
    Grimmett, G.: Percolation. Springer, New York (1999)MATHGoogle Scholar
  12. 12.
    Holland, J.H.: Emergence-chaos to Order. Addison Wesley, Reading (1998)Google Scholar
  13. 13.
    Hubermann, B.A., Hogg, T.: Phase transitions in Artificial Intelligence Systems. Artificial Intelligence 33, 155–171 (1987)CrossRefGoogle Scholar
  14. 14.
    Koza, R., et al.: Genetic programming III. Morgan Kaufmann, San Francisco (1999)MATHGoogle Scholar
  15. 15.
    Langton, C.E., et al.: Life at the Edge of chaos, in Artificial Life II, pp. 41–91. Addison Wesley, Reading (1992)Google Scholar
  16. 16.
    Liebovitch, L.S.: Fractals and Chaos. Oxford University Press, Oxford (1998)MATHGoogle Scholar
  17. 17.
    Mamei, M., Zambonelli, F.: Spray computers: Frontiers of self organization and Pervasive computing (2004), http://www.irit.fr/SMAC/Publications.html
  18. 18.
    Mithen, S.: The Prehistory of Mind. Thames and Hudson, London (1999)Google Scholar
  19. 19.
    Ott, E., et al.: Coping with Chaos. John Wiley, New York (1994)MATHGoogle Scholar
  20. 20.
    Prigogine, I.: From being to becoming. H. Freeman and Co., San Francisco (1980)Google Scholar
  21. 21.
    Prigogine, I.: Laws of Nature. Physica A 263, 528–539 (1999)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Rose, M.R., Lauder, G.V.: Adapatation. Academic Press, New York (1996)Google Scholar
  23. 23.
    Serugendo, G.D.M.: Engineering Emergent Behaviour: A Vision. In: MABS 2003. LNCS, vol. 2927, pp. 1–7. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  24. 24.
    West, B.J.: Fractal Physiology and chaos in Medicine. World Scientific, Singapore (1990)MATHGoogle Scholar
  25. 25.
    Wolfram, S.: A New kind of Science. Wolfram Media Inc., Champaign (2002)MATHGoogle Scholar
  26. 26.
    Zak, M., et al.: From Instability to Intelligence. Springer, New York (1997)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • E. V. Krishnamurthy
    • 1
  • V. Kris Murthy
    • 2
  1. 1.Computer Sciences LaboratoryAustralian National UniversityCanberraAustralia
  2. 2.School of Business Information TechnologyR.M.I.T UniversityMelbourneAustralia

Personalised recommendations