Lightweight Protection of Visual Data Using High-Dimensional Wavelet Parametrization

  • Andreas Pommer
  • Andreas Uhl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3617)


A lightweight encryption scheme for visual data based on wavelet filter parametrization is discussed. Being a special variant of header encryption, the technique has an extremely low computational demand. Security assessement of low-dimensional parametrizations schemes show severe weaknesses. We show that using high-dimensional parametrizations the scheme may be employed in applications requiring a medium security level.


Wavelet Packet Visual Data Selective Encryption Compression Quality Admissible Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bhargava, B., Shi, C., Wang, Y.: MPEG video encryption algorithms. Multimedia Tools and Applications 24(1), 57–79 (2004)CrossRefGoogle Scholar
  2. 2.
    Grosbois, R., Gerbelot, P., Ebrahimi, T.: Authentication and access control in the JPEG 2000 compressed domain. In: Tescher, A.G. (ed.) Applications of Digital Image Processing XXIV, Proceedings of SPIE, San Diego, CA, USA, July 2001, vol. 4472, pp. 95–104 (2001)Google Scholar
  3. 3.
    Köckerbauer, T., Kumar, M., Uhl, A.: Lightweight JPEG 2000 confidentiality for mobile environments. In: Proceedings of the IEEE International Conference on Multimedia and Expo, ICME 2004, Taipei, Taiwan (June 2004)Google Scholar
  4. 4.
    Kutil, R.: A significance map based adaptive wavelet zerotree codec (SMAWZ). In: Panchanathan, S., Bove, V., Sudharsanan, S.I. (eds.) Media Processors 2002, SPIE Proceedings, January 2002, vol. 4674, pp. 61–71 (2002)Google Scholar
  5. 5.
    Macq, B.M., Quisquater, J.-J.: Cryptology for digital TV broadcasting. Proceedings of the IEEE 83(6), 944–957 (1995)CrossRefGoogle Scholar
  6. 6.
    Meerwald, P., Uhl, A.: Watermark security via wavelet filter parametrization. In: Proceedings of the IEEE International Conference on Image Processing (ICIP 2001), Thessaloniki, Greece, October 2001. IEEE Signal Processing Society, vol. 3, pp. 1027–1030 (2001)Google Scholar
  7. 7.
    Norcen, R., Uhl, A.: Selective encryption of the JPEG2000 bitstream. In: Lioy, A., Mazzocchi, D. (eds.) CMS 2003. LNCS, vol. 2828, pp. 194–204. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Pommer, A., Uhl, A.: Wavelet packet methods for multimedia compression and encryption. In: Proceedings of the 2001 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, Victoria, Canada, August 2001. IEEE Signal Processing Society, pp. 1–4 (2001)Google Scholar
  9. 9.
    Pommer, A., Uhl, A.: Selective encryption of wavelet-packet encoded image data — efficiency and security. ACM Multimedia Systems (Special issue on Multimedia Security) 9(3), 279–287 (2003)Google Scholar
  10. 10.
    Schneid, J., Pittner, S.: On the parametrization of the coefficients of dilation equations for compactly supported wavelets. Computing 51, 165–173 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Uhl, A., Pommer, A.: Are parameterised biorthogonal wavelet filters suited (better) for selective encryption? In: Dittmann, J., Fridrich, J. (eds.) Multimedia and Security Workshop 2004, Magdeburg, Germany, September 2004, pp. 100–106 (2004)Google Scholar
  12. 12.
    Uhl, A., Pommer, A.: Image and Video Encryption. From Digital Rights Management to Secured Personal Communication. Advances in Information Security, vol. 15. Springer, Heidelberg (2005)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Andreas Pommer
    • 1
  • Andreas Uhl
    • 1
  1. 1.Department of Scientific ComputingSalzburg UniversitySalzburgAustria

Personalised recommendations