On Convergence of Dynamic Cluster Formation in Multi-agent Networks

  • Mikhail Prokopenko
  • Piraveenan Mahendra Rajah
  • Peter Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3630)

Abstract

Efficient hierarchical architectures for reconfigurable and adaptive multi-agent networks require dynamic cluster formation among the set of nodes (agents). In the absence of centralised controllers, this process can be described as self-organisation of dynamic hierarchies, with multiple cluster-heads emerging as a result of inter-agent communications. Decentralised clustering algorithms deployed in multi-agent networks are hard to evaluate precisely for the reason of the diminished predictability brought about by self-organisation. In particular, it is hard to predict when the cluster formation will converge to a stable configuration. This paper proposes and experimentally evaluates a predictor for the convergence time of cluster formation, based on a regularity of the inter-agent communication space as the underlying parameter. The results indicate that the generalised “correlation entropy” K 2 (a lower bound of Kolmogorov-Sinai entropy) of the volume of the inter-agent communications can be correlated with the time of cluster formation, and can be used as its predictor.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dhamala, M., Lai, Y.C., Kostelich, E.J.: Analyses of transient chaotic time series. Physical Review E 64(056207), 1–9 (2001)Google Scholar
  2. 2.
    Ester, M., Kriegel, H., Sander, J., Xu, X.: A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In: The 2nd International Conference on Knowledge Discovery and Data Mining, pp. 226–231 (1996)Google Scholar
  3. 3.
    Foreman, M., Prokopenko, M., Wang, P.: Phase Transitions in Self-organising Sensor Networks. In: Banzhaf, W., Christaller, T., Dittrich, P., Kim, J.T., Ziegler, J. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 781–791. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Grassberger, P., Procaccia, I.: Estimation of the Kolmogorov entropy from a chaotic signal. Physical Review A 28(4), 2591 (1983)CrossRefGoogle Scholar
  5. 5.
    Grassberger, P., Procaccia, I.: Characterization of strange attractors. Physical Review Letters 50, 346–349 (1983)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Hofstadter, D.R.: Godel, Escher, Bach: An Eternal Golden Braid. Vintage Books, New York (1989)Google Scholar
  7. 7.
    Jánosi, I.M., Tél, T.: Time series analysis of transient chaos. Physical Review E 49(4), 2756–2763 (1994)CrossRefGoogle Scholar
  8. 8.
    Kolmogorov, A.N.: A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces. Doklady Akademii Nauk SSSR 119, 861–864 (1958) (Russian)MATHMathSciNetGoogle Scholar
  9. 9.
    Kolmogorov, A.N.: Entropy per unit time as a metric invariant of automorphisms. Doklady Akademii Nauk SSSR 124, 754–755 (1959) (Russian)MATHMathSciNetGoogle Scholar
  10. 10.
    Lin, R., Gerla, M.: Adaptive Clustering for Mobile Wireless Networks. IEEE Journal on Selected Areas in Communications, 1265–1275 (September 1997)Google Scholar
  11. 11.
    Mahendra rajah, P., Prokopenko, M., Wang, P., Price, D.C.: Towards adaptive clustering in self-monitoring multi-agent networks. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds.) KES 2005. LNCS (LNAI), vol. 3682, pp. 796–805. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Ogston, E., Overeinder, B., Van Steen, M., Brazier, F.: A Method for Decentralized Clustering in Large Multi-Agent Systems. In: The 2nd International Joint Conference on Autonomous Agent and Multi Agent Systems, pp. 798–796 (2003)Google Scholar
  13. 13.
    Price, D.C., Scott, D.A., Edwards, G., Batten, A., Farmer, A.J., Hedley, M., Johnson, M., Lewis, C., Poulton, G., Prokopenko, M., Valencia, P., Wang, P.: An Integrated Health Monitoring System for an Ageless Aerospace Vehicle. In: 4th Int’l Workshop on Structural Health Monitoring, Stanford (2003)Google Scholar
  14. 14.
    Prokopenko, M., Wang, P., Price, D.C., Valencia, P., Foreman, M., Farmer, A.J.: Self-organising Hierarchies in Sensor and Communication Networks. To appear in Artificial Life. Special issue on Dynamic Hierarchies (2005)Google Scholar
  15. 15.
    Rasmussen, S., Baas, N.A., Mayer, B., Nilsson, M., Olesen, M.W.: Ansatz for Dynamical Hierarchies. Artificial Life 7, 4 (2001)Google Scholar
  16. 16.
    Rényi, A.: Probability theory. North-Holland, Amsterdam (1970)Google Scholar
  17. 17.
    Sandholm, T., Lesser, V.: Coalition Formation among Bounded Rational Agents. In: The 14th International Joint Conference on Artificial Intelligence (IJCAI 1995), Montreal, Canada, pp. 662–669Google Scholar
  18. 18.
    Sinai, Ya.G.: On the concept of entropy of a dynamical system. Doklady Akademii Nauk SSSR 124, 768–771 (1959) (Russian)MATHMathSciNetGoogle Scholar
  19. 19.
    Takens, F.: Detecting strange attractors in turbulence. In: Dynamical systems and turbulence. LNM, vol. 898. Springer, Berlin (1981)CrossRefGoogle Scholar
  20. 20.
    Takens, F.: Invariants related to dimension and entropy. Atas do 13 Colóquio Brasiliero do Matemática, Rio de Janeiro (1983)Google Scholar
  21. 21.
    Theiler, J.: Spurious dimension from correlation algorithms applied to limited time-series data. Physical Review A 34(3), 2427–2432 (1986)CrossRefGoogle Scholar
  22. 22.
    Theiler, J.: Estimating fractal dimension. J. of the Optical Society of America A 7(6), 1055 (1990)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH:A New Data Clustering Algorithm and Its Applications. Data Mining and Knowledge Discovery 1(2), 141–182 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Mikhail Prokopenko
    • 1
  • Piraveenan Mahendra Rajah
    • 2
  • Peter Wang
    • 1
  1. 1.CSIRO Information and Communication Technology CentreNorth RydeAustralia
  2. 2. North AdelaideAustralia

Personalised recommendations