Self-adaptation of Genome Size in Artificial Organisms

  • C. Knibbe
  • G. Beslon
  • V. Lefort
  • F. Chaudier
  • J. -M. Fayard
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3630)

Abstract

In this paper we investigate the evolutionary pressures influencing genome size in artificial organisms. These were designed with three organisation levels (genome, proteome, phenotype) and are submitted to local mutations as well as rearrangements of the genomic structure. Experiments with various per-locus mutation rates show that the genome size always stabilises, although the fitness computation does not penalise genome length. The equilibrium value is closely dependent on the mutational pressure, resulting in a constant genome-wide mutation rate and a constant average impact of rearrangements. Genome size therefore self-adapts to the variation intensity, reflecting a balance between at least two pressures: evolving more and more complex functions with more and more genes, and preserving genome robustness by keeping it small.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maynard-Smith, J.: Overview - unsolved evolutionary problems. In: Dover, G.A., Flavell, R.B. (eds.) Genome evolution, pp. 375–382. Academic Press, New York (1982)Google Scholar
  2. 2.
    Lenski, R.E.: Phenotypic and genomic evolution during a 20,000-generation experiment with the bacterium Escherichia coli. Plant Breeding Reviews 24, 225–265 (2004)MathSciNetGoogle Scholar
  3. 3.
    Goldberg, D.E., Deb, K., Kargupta, H., Harik, G.: Rapid accurate optimization of difficult problems using fast messy genetic algorithms. In: Forrest, S. (ed.) Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 56–64. Morgan Kaufmann, San Mateo (1993)Google Scholar
  4. 4.
    Burke, D.S., De Jong, K.A., Grefenstette, J.J., Ramsey, C.L., Wu, A.S.: Putting more genetics into genetic algorithms. Evolutionary Computation 6, 387–410 (1998)CrossRefGoogle Scholar
  5. 5.
    Ochoa, G., Harvey, I., Buxton, H.: Optimal mutation rates ans selection pressure in genetic algorithms. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2000). Morgan Kaufmann, San Francisco (2000)Google Scholar
  6. 6.
    Eigen, M., Schuster, P.: The hypercycle: A principle of natural self-organization. Springer, Heidelberg (1979)Google Scholar
  7. 7.
    Petrov, D.A.: Mutational equilibrium model of genome size evolution. Theoretical Population Biology 61, 533–546 (2002)CrossRefGoogle Scholar
  8. 8.
    Mira, A., Ochman, H., Moran, N.A.: Deletional bias and the evolution of bacterial genomes. Trends in Genetics 17, 589–596 (2001)CrossRefGoogle Scholar
  9. 9.
    Gregory, T.R.: Coincidence, coevolution, or causation? dna content, cell size, and the C-value enigma. Biological Reviews of the Cambridge Philosophical Society 76, 65–101 (2001)CrossRefGoogle Scholar
  10. 10.
    Doolittle, W.F., Sapienza, C.: Selfish genes,the phenotype paradigm and genome evolution. Nature 284, 601–603 (1980)CrossRefGoogle Scholar
  11. 11.
    Ohno, S.: So much junk dna in our genome. In: Smith, H.H. (ed.) Evolution of Genetic Systems, New York, Gordon, Breach, pp. 336–370 (1972)Google Scholar
  12. 12.
    Eigen, M., McCaskill, J., Schuster, P.: The molecular quasi-species. Adv. Chem. Phys. 75, 149–263 (1989)CrossRefGoogle Scholar
  13. 13.
    Van Nimwegen, E., Crutchfield, J.P., Huynen, M.: Neutral evolution of mutational robustness. Proc. Natl. Acad. Sci. USA 96, 9716–9720 (1999)CrossRefGoogle Scholar
  14. 14.
    Ofria, C., Wilke, C.: Avida: A software platform for research in computational evolutionary biology. Artificial Life 10, 191–229 (2004)CrossRefGoogle Scholar
  15. 15.
    Wilke, C.O., Wang, J.L., Ofria, C., Lenski, R.E., Adami, C.: Evolution of digital organisms at high mutation rates leads to the survival of the flattest. Nature 412, 331–333 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • C. Knibbe
    • 1
  • G. Beslon
    • 1
  • V. Lefort
    • 1
  • F. Chaudier
    • 2
  • J. -M. Fayard
    • 3
  1. 1.Prisma lab.INSA LyonVilleurbanne CedexFrance
  2. 2.Biosciences DepartmentINSA LyonVilleurbanne CedexFrance
  3. 3.BF2I – UMR 0203, NRA/INSA LyonVilleurbanne CedexFrance

Personalised recommendations