Superlinear Physical Performances in a SWARM-BOT

  • Francesco Mondada
  • Michael Bonani
  • André Guignard
  • Stéphane Magnenat
  • Christian Studer
  • Dario Floreano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3630)

Abstract

A swarm-bot is a robotic entity built of several autonomous mobile robots (called s-bots) physically connected together. This form of collective robotics exploits robot interactions both at the behavioral and physical levels. The goal of this paper is to analyze the physical performance of a swarm-bot as function of its size (number n of s-bots composing it). We present three tasks and the corresponding swarm-bot performances. In all three tasks we show superlinear performances in a range of n where the physical forces applied in the structure fit to the robot design. This superlinear performance range helps in understanding which swarm-bot size is optimal for a given task and gives interesting hints for the design of new application-oriented swarm-bots.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, C., Theraulau, G., Deneubourg, J.-L.: Self-assemblages in insect societies. Insectes Sociaux 49, 99–110 (2002)CrossRefGoogle Scholar
  2. 2.
    Fukuda, T., Mizoguchi, H., Sekiyama, K., Arai, F.: Group Behavior Control for MARS (Micro Autonomous Robotic System). In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 1999), May 10–15, pp. 1550–1555. IEEE Press, Piscataway (1999)Google Scholar
  3. 3.
    Goldberg, D., Matarić, M.J.: Design and Evaluation of Robust Behavior-Based Controllers. In: Balch, T., Parker, L.E. (eds.) Robot Teams: From Diversity to Polymorphism, pp. 315–344. A. K. Peters, Natick (2002)Google Scholar
  4. 4.
    Ijspeert, A.J., Martinoli, A., Billard, A., Gambardella, L.M.: Collaboration through the exploitation of local interactions in autonomous collective robotics: the stick pulling experiment. Autonomous Robots 11, 149–171 (2001)MATHCrossRefGoogle Scholar
  5. 5.
    Jrgensen, M.W., Ostergaard, E.H., Lund, H.H.: Modular atron: Modules for a self-reconfigurable robot. In: Proceedings of IEEE/RSJ International Conference on Robots and Systems (IROS), pp. 2068–2073. IEEE Press, Piscataway (2004)Google Scholar
  6. 6.
    Kamimura, A., Murata, S., Yoshida, E., Kurokawa, H., Tomita, K., Kokaji, S.: Self-Reconfigurable Modular Robot–Experiments on Reconfiguration and Locomotion. In: Tarn, T.J. (ed.) Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems IROS 2001, vol. 1, pp. 606–612. IEEE Computer Society Press, Piscataway (2001)Google Scholar
  7. 7.
    Martinoli, A., Mondada, F.: Collective and cooperative group behaviours: Biologically inspired experiments in robotics. In: Khatib, O., Salisbury, J.K. (eds.) Structure in Complexity Theory. LNCIS, vol. 223, pp. 3–10. Springer, Berlin (1997)Google Scholar
  8. 8.
    Martinoli, A.: Swarm Intelligence in Autonomous Collective Robotics: From Tools to the Analysis and Synthesis of Distributed Collective Strategies. PhD thesis, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland (1999)Google Scholar
  9. 9.
    Mataric, M., Nilsson, M., Simsarian, K.: Cooperative multi-robot box-pushing. In: Proceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 556–561. IEEE Computer Society, Los Alamitos (1995)Google Scholar
  10. 10.
    Mondada, F., Bonani, M., Magnenat, S., Guignard, A., Floreano, D.: Physical connections and cooperation in swarm robotics. In: Proceedings of the 8th Conference on Intelligent Autonomous Systems (IAS8), March 10-14, pp. 53–60. IOS Press, Amsterdam (2004)Google Scholar
  11. 11.
    Mondada, F., Pettinaro, G.C., Guignard, A., Kwee, I., Floreano, D., Deneubourg, J.-L., Nolfi, S., Gambardella, L.M., Dorigo, M.: Swarm-bot: a new distributed robotic concept. Autonomous Robots 17(2–3), 193–221 (2004)CrossRefGoogle Scholar
  12. 12.
    Parker, L.E.: Alliance: an Architecture for Fault Tolerant Multirobot Cooperation. IEEE Transactions on Robotics and Automation 14(2), 220–240 (1998)CrossRefGoogle Scholar
  13. 13.
    Yim, M.: Locomotion with a Unit-Modular Reconfigurable Robot. PhD thesis, Stanford university, Stanford, CA (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Francesco Mondada
    • 1
  • Michael Bonani
    • 1
  • André Guignard
    • 1
  • Stéphane Magnenat
    • 1
  • Christian Studer
    • 1
  • Dario Floreano
    • 1
  1. 1.Laboratory of Intelligent SystemsEcole Polytechnique Fédérale de Lausanne (EPFL) 

Personalised recommendations