Self-assembly on Demand in a Group of Physical Autonomous Mobile Robots Navigating Rough Terrain

  • Rehan O’Grady
  • Roderich Groß
  • Francesco Mondada
  • Michael Bonani
  • Marco Dorigo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3630)


Consider a group of autonomous, mobile robots with the ability to physically connect to one another (self-assemble). The group is said to exhibit functional self-assembly if the robots can choose to self-assemble in response to the demands of their task and environment [15]. We present the first robotic controller capable of functional self-assembly implemented on a real robotic platform.

The task we consider requires a group of robots to navigate over an area of unknown terrain towards a target light source. If possible, the robots should navigate to the target independently. If, however, the terrain proves too difficult for a single robot, the robots should self-assemble into a larger group entity and collectively navigate to the target.

We believe this to be one of the most complex tasks carried out to date by a team of physical autonomous robots. We present quantitative results confirming the efficacy of our controller. This puts our robotic system at the cutting edge of autonomous mobile multi-robot research.


Rough Terrain Proximity Sensor Neural Network Controller Single Robot Unknown Terrain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, C., Theraulaz, G., Deneubourg, J.-L.: Self-assemblages in insects societies. Insectes Soc. 49, 99–110 (2002)CrossRefGoogle Scholar
  2. 2.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, Oxford (1999)zbMATHGoogle Scholar
  3. 3.
    Dorigo, M., Trianni, V., Şahin, E., Groß, R., Labella, T.H., Baldassarre, G., Nolfi, S., Deneubourg, J.-L., Mondada, F., Floreano, D., Gambardella, L.M.: Evolving self-organizing behaviors for a Swarm-bot. Auton. Robots 17(2–3), 223–245 (2004)CrossRefGoogle Scholar
  4. 4.
    Groß, R., Bonani, M., Mondada, F., Dorigo, M.: Autonomous self-assembly in mobile robotics. Technical Report IRIDIA/2005-2, IRIDIA - Université Libre de Bruxelles (2005) Submitted to IEEE Trans. RobotGoogle Scholar
  5. 5.
    Groß, R., Dorigo, M.: Group transport of an object to a target that only some group members may sense. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 852–861. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Hirose, S., Shirasu, T., Fukushima, E.F.: Proposal for cooperative robot Gunryucomposed of autonomous segments. Robot. Auton. Syst. 17, 107–118 (1996)CrossRefGoogle Scholar
  7. 7.
    Lioni, A., Sauwens, C., Theraulaz, G., Deneubourg, J.-L.: Chain formation in Œcophylla longinoda. J. Insect Behav. 15, 679–696 (2001)CrossRefGoogle Scholar
  8. 8.
    Martinoli, A., Easton, K., Agassounon, W.: Modeling swarm robotic systems: A case study in collaborative distributed manipulation. Int. J. Robot. Res. 23(4), 415–436 (2004)CrossRefGoogle Scholar
  9. 9.
    Melhuish, C., Holland, O., Hoddell, S.: Convoying: Using chorusing to form travelling groups of minimal agents. Robot. Auton. Syst. 28, 207–216 (1999)CrossRefGoogle Scholar
  10. 10.
    Mondada, F., Gambardella, L.M., Floreano, D., Nolfi, S., Deneubourg, J.-L., Dorigo, M.: SWARM-BOTS: Physical interactions in collective robotics. In: IEEE Robot. Autom. Mag. (2005) (to appear)Google Scholar
  11. 11.
    Mondada, F., Pettinaro, G.C., Guignard, A., Kwee, I.V., Floreano, D., Deneubourg, J.-L., Nolfi, S., Gambardella, L.M., Dorigo, M.: SWARM-BOT: A new distributed robotic concept. Auton. Robots 17(2–3), 193–221 (2004)CrossRefGoogle Scholar
  12. 12.
    Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., Kokaji, S.: M-TRAN: Self-reconfigurable modular robotic system. IEEE/ASME Trans. Mechatron. 7(4), 431–441 (2002)CrossRefGoogle Scholar
  13. 13.
    Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines. MIT Press, Cambridge (2000)Google Scholar
  14. 14.
    Rubenstein, M., Payne, K., Will, P., Shen, W.M.: Docking among independent and autonomous CONRO self-reconfigurable robots. In: Proc. of the 2004 IEEE Int. Conf. on Robotics and Automation, vol. 3, pp. 2877–2882. IEEE Computer Society Press, Los Alamitos (2004)CrossRefGoogle Scholar
  15. 15.
    Trianni, V., Tuci, E., Dorigo, M.: Evolving functional self-assembling in a swarm of autonomous robots. In: From Animals to Animats VIII. Proc. of the 8th Inter. Conf. on Simulation of Adaptive Behavior, pp. 405–414. MIT Press, Cambridge (2004)Google Scholar
  16. 16.
    Yim, M., Roufas, K., Duff, D., Zhang, Y., Eldershaw, C., Homans, S.B.: Modular reconfigurable robots in space applications. Auton. Robots 14(2-3), 225–237 (2003)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Rehan O’Grady
    • 1
  • Roderich Groß
    • 1
  • Francesco Mondada
    • 2
  • Michael Bonani
    • 2
  • Marco Dorigo
    • 1
  1. 1.IRIDIAUniversité Libre de BruxellesBrusselsBelgium
  2. 2.ASLEcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations