Advertisement

(Co)Evolution of (De)Centralized Neural Control for a Gravitationally Driven Machine

  • Steffen Wischmann
  • Martin Hülse
  • Frank Pasemann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3630)

Abstract

Using decentralized control structures for robot control can offer a lot of advantages, such as less complexity, better fault tolerance and more flexibility. In this paper the evolution of recurrent artificial neural networks as centralized and decentralized control architectures will be demonstrated. Both designs will be analyzed concerning their structure-function relations and robustness against lesion experiments. As an application, a gravitationally driven robotic system will be introduced. Its task can be allocated to a cooperative behavior of five subsystems. A co-evolutionary strategy for generating five autonomous agents in parallel will be described.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baldassarre, G., Parisi, D., Nolfi, S.: Coordination and behavior integration in cooperating simulated robots. In: Proc. of the 8th International Conference on the Simulation of Adaptive Behavior (SAB 2004), pp. 385–394 (2004)Google Scholar
  2. 2.
    Beer, R.D.: The dynamics of active categorical perception in an evolved model agent. Adaptive Behavior 11(4), 209–243 (2003)CrossRefGoogle Scholar
  3. 3.
    Cao, Y.U., Fukunaga, A.S., Kahng, A.B.: Cooperative mobile robotics: Antecedents and directions. Autonomous Robots 4, 7–27 (1997)CrossRefGoogle Scholar
  4. 4.
    Clark, A.: Being There: Putting Brain, Body, and World Together Again. MIT Press, Cambridge (1996)Google Scholar
  5. 5.
    Harvey, I., Di Paolo, E.A., Wood, R., Quinn, M., Tuci, E.: Evolutionary robotics: a new scientific tool for studying cognition. Artificial Life 11, 79–98 (2005)CrossRefGoogle Scholar
  6. 6.
    Hülse, M., Wischmann, S., Pasemann, F.: Structure and function of evolved neuro-controllers for autonomous robots. Connection Science 16(4), 249–266 (2004)CrossRefGoogle Scholar
  7. 7.
    Ijspeert, A.J., Martinoli, A., Billard, A., Gambardella, L.M.: Collaboration through the exploitation of local interactions in autonomous collective robotics: The stick pulling experiment. Autonomous Robots 11(2), 149–171 (2001)zbMATHCrossRefGoogle Scholar
  8. 8.
    Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines. MIT Press, Cambridge (2000)Google Scholar
  9. 9.
    Pasemann, F., Steinmetz, U., Hülse, M., Lara, B.: Robot control and the evolution of modular neurodynamics. Theory in Biosciences 120, 311–326 (2001)Google Scholar
  10. 10.
    Pfeifer, R.: On the role of embodiment in the emergence of cognition: Grey walter’s turtles and beyond. In: Proc. of the workshop The legacy of Grey Walter, Bristol (2002)Google Scholar
  11. 11.
    Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press, Cambridge (1999)Google Scholar
  12. 12.
    Quinn, M., Smith, L., Mayley, G., Husbands, P.: Evolving controllers for a homogeneous system of physical robots: Structured cooperation with minimal sensors. Philosophical Transactions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences 361, 2321–2344 (2003)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Resnick, M.: Turtles, termites, and traffic jams: explorations in massively parallel microworlds. MIT Press, Cambridge (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Steffen Wischmann
    • 1
  • Martin Hülse
    • 1
  • Frank Pasemann
    • 1
  1. 1.Fraunhofer Institute for Autonomous Intelligent SystemsSankt AugustinGermany

Personalised recommendations