Advertisement

Multiple Particle Tracking for Live Cell Imaging with Green Fluorescent Protein (GFP) Tagged Videos

  • Sameer Singh
  • Harish Bhaskar
  • Jeremy Tavare
  • Gavin Welsh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3687)

Abstract

Particle tracking is important for understanding the mobile behaviour of objects of varying sizes in a range of physical and biological science applications. In this paper we present a new algorithm for tracking cellular particles imaged using a confocal microscope. The algorithm performs adaptive image segmentation to identify objects for tracking and uses intelligent estimates of neighbourhood search, spatial relationship, velocity, direction estimates, and shape/size estimates to perform robust tracking. Our tracker is tested on three videos for vesicle tracking in GFP tagged videos. The results are compared to the popular Harvard tracker and we show that our tracking scheme offers better performance and flexibility for tracking.

Keywords

Particle tracker Vesicles Insulin Diabetes Confocal Microscopy Image Analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babcock, H.P., Chen, C., Zhuang, X.: Using single-particle tracking to study nuclear traficking of viral Genes. Biophysical Journal 87, 2749–2758 (2004)CrossRefGoogle Scholar
  2. 2.
    Berg, H.C.: Motile behaviour of bacteria. Physics Today 53(1), 24–29 (2000)CrossRefGoogle Scholar
  3. 3.
    Cheezum, M.K., Walker, W.F., Guilford, W.H.: Quantitative comparison of algorithms for tracking single fluorescent particles. Biophysical Journal 81, 2378–2388 (2001)CrossRefGoogle Scholar
  4. 4.
    Fletcher, L.M., Welsh, G.I., Oatey, P.B., Tavare, J.M.: Role for the microtubule cytoskeleton in the regulation of insulin-stimulated glucose uptake and GLUT4 trafficking. Biochem. J. 352, 267–276 (2000)CrossRefGoogle Scholar
  5. 5.
    Khan, Z., Balch, T., Dellaert, F.: An MCMC-based particle filter for tracking multiple interacting targets. Technical Report number GIT-GVU-03-35 (October 2003)Google Scholar
  6. 6.
    Qian, H.: Single-particle tracking: Brownian dynamics of visco-elastic materials. Biophysical Journal 79, 137–143 (2000)CrossRefGoogle Scholar
  7. 7.
    Sharma, N.N., Ganesh, M., Mittal, R.K.: Non-brownian motion of nano-particles: an impact process model. IEEE Transactions on Nanotechnology 3(1) (2004)Google Scholar
  8. 8.
    Soni, G.V., Ali, B.M.J., Hatwalney, Y., Shivashankar, G.V.: Single particle tracking of correlated bacterial dynamics. Biophysical Journal 84, 2634–2637 (2003)CrossRefGoogle Scholar
  9. 9.
    Tavare, J.M., Fletcher, L.M., Welsh, G.I.: Using green fluorescent protein to study intracellular signaling. J.Endocrinol. 170, 297–306Google Scholar
  10. 10.
    Tseng, Y., Wirtz, D.: Mechanics and multiple-particle tracking micro-heterogeneity of a-actinin-cross-linked actin filament networks. Biophysical Journal 81, 1643–1656 (2001)CrossRefGoogle Scholar
  11. 11.
    Tsien, R.Y.: The green fluorescent protein. Ann. Rev. Biochem. 67, 509–544 (1998)CrossRefGoogle Scholar
  12. 12.
    Vrljic, M., Nishinura, S.Y., Brasselet, S., Moerner, W.E., McConnell, H.M.: Translational Diffusion of Individual Class II MHC Membrane Proteins in Cells. Biophysical Journal 83, 2681–2692 (2002)CrossRefGoogle Scholar
  13. 13.
    Yasuda, Y., Dubois, M., Huang, T.S.: Data compression for check processing machines. Proceedings of IEEE 68, 874–885 (1980)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Sameer Singh
    • 1
  • Harish Bhaskar
    • 1
  • Jeremy Tavare
    • 2
  • Gavin Welsh
    • 2
  1. 1.ATR Labs, Research School of InformaticsLoughborough UniversityUK
  2. 2.Dept. of Biochemistry, School of Medical SciencesUniversity of BristolUK

Personalised recommendations