Advertisement

Position Estimation for Goods Tracking System Using Mobile Detectors

  • Hiroshi Mineno
  • Kazuo Hida
  • Miho Mizutani
  • Naoto Miyauchi
  • Kazuhiro Kusunoki
  • Akira Fukuda
  • Tadanori Mizuno
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3681)

Abstract

Determining physical location of indoor objects is one of the key issues in ubiquitous computing. Although there are many proposals to provide physical location tracking, those have some restrictions such as a dependence on the type and size of objects and a trade-off between position accuracy and the number of sensing devices. In this paper we present a hierarchical approach to conquer these restrictions using mobile detectors. We describe a system called MobiTra that estimates the position of indoor any and all objects using mobile detectors’ detection histories. The effect of position estimation is evaluated through prototype testbed and simulation.

Keywords

Target Object Position Estimation Connectivity Constraint Read Range Negative Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Want, R., Hopper, A., Falcao, V., Gibbons, J.: The Active Badge Location System. ACM Transactions on Information Systems 40(1), 91–102 (1992)CrossRefGoogle Scholar
  2. 2.
    Harter, A., Hopper, A., Steggles, P., Ward, A., Webster, P.: The Anatomy of a Context-Aware Application. IEEE Computer 34(8), 50–56 (2001)Google Scholar
  3. 3.
    Priyantha, N.B., Chakraborty, A., Balakrishnan, H.: The Cricket location-support system. In: ACM/IEEE MobiCom 2000, pp. 32–43 (2000)Google Scholar
  4. 4.
    Bahl, P., Padmanabhan, V.N.: RADAR: An In-Building RF-Based User Location and Tracking System. In: INFOCOM 2000, pp. 775–784 (2000)Google Scholar
  5. 5.
    Hightower, J., Borriella, G.: Location Systems for Ubiquitous Computing. IEEE Computer 34, 57–66 (2001)Google Scholar
  6. 6.
    Bulusu, N., Heidemann, J., Estrin, D.: GPS-less low cost outdoor localization for very small devices. IEEE Personal Communications 7(5), 28–34 (2000)CrossRefGoogle Scholar
  7. 7.
    Beutel, J.: Geolocation in a Pico Radio Environment. Master Thesis, UC Berkeley (2000)Google Scholar
  8. 8.
    Krumm, J.: Probabilistic Inferencing for Location. In: Krumm, J. (ed.) Workshop on Location-Aware Computing, pp. 25–27 (2003)Google Scholar
  9. 9.
    Fox, D., Hightower, J., Liao, L., Schultz, D., Boriello, G.: Bayesian Filtering for Location Estimation. IEEE Pervasive Computing 2(3), 24–33 (2003)CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Broch, J., Maltz, D., Johnson, D., Hu, Y.C., Jetcheva, J.: A performance comparison of multi-hop wireless ad hoc network routing protocols. ACM IEEE Mobicom, 85–97 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Hiroshi Mineno
    • 1
  • Kazuo Hida
    • 1
  • Miho Mizutani
    • 1
  • Naoto Miyauchi
    • 2
  • Kazuhiro Kusunoki
    • 3
  • Akira Fukuda
    • 4
  • Tadanori Mizuno
    • 1
  1. 1.Shizuoka UniversityHamamatsu-shi, ShizuokaJapan
  2. 2.Mitsubishi Electric CorporationKanagawaJapan
  3. 3.Nagoya Works, Mitsubishi Electric CorporationAichiJapan
  4. 4.Kyushu UniversityFukuokaJapan

Personalised recommendations