Knowledge-Based System for Color Maps Recognition

  • Serguei Levachkine
  • Efrén Gonzalez
  • Miguel Torres
  • Marco Moreno
  • Rolando Quintero
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3681)

Abstract

In this paper, we describe the Fine-to-Coarse Scale Method in which the knowledge of cartographic patterns into small-scale map aids to recognize the corresponding patterns into large-scale map of the same territory. This approach exploits the user’s experience providing the knowledge domain in the form of the prescribed feature-attribute set. The cartographic patterns are presented in raster maps. A map is composed by thematic layers that contain cartographic patterns. The knowledge to recognize cartographic objects in raster fine scale maps is based on the information about the objects of the coarse scale map. These recognized objects are removed from the map, reaching a simplified representation of the map. Then, the rest of objects are recognized as new cartographic material in this simplified map. The goal of these representations is to obtain a GIS database.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Levachkine, S.P., Polchkov, E.A.: Integrated Technique for Automated Digitization of Raster Maps. Revista Digital Universitaria 1(1) (2000), Available on-line at http://www.revista.unam.mx/vol.1/art4/index.html
  2. 2.
    Levachkine, S.: Raster to Vector Conversion of Color Cartographic Maps. In: Lladós, J., Kwon, Y.-B. (eds.) GREC 2003. LNCS, vol. 3088, pp. 50–62. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Meyers, G.K., Chen, C.-H.: Verification-based Approach for Automated Text and Feature Extraction from Raster-scanned Maps. LNCS, vol. 1072, pp. 190–203. Springer, Heidelberg (1996)Google Scholar
  4. 4.
    Gonzalez-Gómez, E., Levachkine, S.: Color cartographic pattern recognition using the coarse to fine scale method. LNCS, vol. 3287, pp. 540–547. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Levachkine, S., Velázquez, A., Alexandrov, V., Kharinov, M.: Semantic Analysis and Recognition of Raster-scanned Color Cartographic Images. In: Blostein, D., Kwon, Y.-B. (eds.) GREC 2001. LNCS, vol. 2390, pp. 178–189. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Levachkine, S., Torres, M., Moreno, M., Quintero, R.: Knowledge-Based Method to Recognize Objects in Geo-Images. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.) KES 2004. LNCS (LNAI), vol. 3215, pp. 718–725. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Martínez-Trinidad, J.F., Guzmán-Arenas, A.: The Logical Combinatorial Approach to Pattern Recognition, an Overview through Selected Works. Pattern Recognition 34(1), 741–7519 (2001)MATHCrossRefGoogle Scholar
  8. 8.
    Torres-Ruiz, M., Levachkine, S.: Semantics Definition to Represent Spatial Data. In: Levachkine, S., Ruas, A., Bodansky, E. (eds.) Proc. International Workshop on Semantic Processing of Spatial Data (GEOPRO 2002), Mexico City, Mexico, December 3-4 (2002)Google Scholar
  9. 9.
    Lazo-Cortés, M., Ruiz-Shulcloper, J., Alba-Cabrera, E.: An Overview of the Evolution of the Concept of Testor. Pattern Recognition 34(4), 753–762 (2001)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Serguei Levachkine
    • 1
  • Efrén Gonzalez
    • 1
  • Miguel Torres
    • 1
  • Marco Moreno
    • 1
  • Rolando Quintero
    • 1
  1. 1.Geoprocessing Laboratory, Centre for Computing Research (CIC) –, National Polytechnic Institute (IPN) 

Personalised recommendations