Implementation of Adaptive Reed-Solomon Decoder for Context-Aware Mobile Computing Device

  • Seung Wook Lee
  • Jong Tae Kim
  • Jae-Sang Cha
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3681)


In the context-aware mobile computing environment, the context-aware mobile computing devices adapt their behavior to available services which require different communication protocols by the type of transmitted data (e.g. video, voice, text and etc.). In this paper, we present a novel architecture for an adaptive Reed-Solomon decoder which can apply to context-aware mobile computing device to support various code specifications for heterogeneous communication protocols. This decoder can vary the length of the codeword, generate polynomials and correct erasures. For this decoder, we use a modified Euclidean algorithm based on a GF(28) finite field for the error locator polynomial. Also, this decoder can support any specification in the range of (1 ≤ n ≤ 255) for the codeword and (1 ≤ t ≤ 255) for the errors.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Roman, G.-C., et al.: Network abstractions for context-aware mobile computing. In: International Conference on Software Engineering Proceedings of the 24th International Conference on Software EngineeringGoogle Scholar
  2. 2.
    Paar, C., Rosner, M.: Comparison of arithmetic architectures for Reed-Solomon decoders in reconfigurable hardware. In: The 5th Annual IEEE Symposium on FPGAs for Custom Computing Machines, Proceedings, April 16-18, pp. 219–225 (1997)Google Scholar
  3. 3.
    Roy, S., Bucker, M., Wilhelm, W., Panwar, B.S.: Reconfigurable hardware accelerator for a universal Reed Solomon codec. In: 1st IEEE International Conference on Circuits and Systems for Communications, 2002. Proceedings. ICCSC 2002, June 26-28, pp. 158–161 (2002)Google Scholar
  4. 4.
    Hsu, H.-Y., Wu, A.-Y.: VLSI design of a reconfigurable multi-mode Reed- Solomon codec for high-speed communication systems. In: 2002 IEEE Asia-Pacific Conference on ASIC, 2002, Proceedings, August 6-8, pp. 359–362 (2002)Google Scholar
  5. 5.
    Song, M.K., Kim, E.B., Won, H.S., Kong, M.H.: Architecture for decoding adaptive Reed-Solomon codes with variable block length. IEEE Transactions on Consumer Electronics 48(3), 631–637 (2002)CrossRefGoogle Scholar
  6. 6.
    Lee, D.H., Kim, J.T.: Efficient Recursive Cell Architecture for the Reed- Solomon Decoder. Journal of the Korean Physical Society 40(1), 82–86 (2002)Google Scholar
  7. 7.
    Shao, H.M., Truong, T.K., Deutsch, L.J., Yuen, J.H., Reed, I.S.: A VLSI Design of a Pipeline Reed-Solomon Decoder. IEEE Trans. Computers 34(5), 393–403 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Reed, I.S., Chen, X.: Error-Control coding for Data Network. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Seung Wook Lee
    • 1
  • Jong Tae Kim
    • 1
  • Jae-Sang Cha
    • 2
  1. 1.School of Information & Communication Eng.Sungkyunkwan Univ.Korea
  2. 2.Department of Information and Communication Eng.Seokyung Univ.Korea

Personalised recommendations