Information Retrieval from the Web: An Interactive Paradigm

  • Massimiliano Albanese
  • Pasquale Capasso
  • Antonio Picariello
  • Antonio Maria Rinaldi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3665)

Abstract

Information retrieval is moving beyond the stage where users simply type one or more keywords and retrieve a ranked list of documents. In such a scenario users have to go through the returned documents in order to find what they are actually looking for. More often they would like to get targeted answers to their queries without extraneous information, even if their requirements are not well specified. In this paper we propose an approach for designing a web retrieval system able to find the desired information through several interactions with the users. The proposed approach allows to overcome the problems deriving from ambiguous or too vague queries, using semantic search and topic detection techniques. The results of the very first experiments on a prototype system are also reported.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abney, S., Collins, M., Singhal, A.: Answer extraction. In: Proceedings of the 6th Applied Natural Language Processing Conference (ANLP 2000), pp. 296–301 (2000)Google Scholar
  2. 2.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieaval. ACM Press, New York (1999)Google Scholar
  3. 3.
    Callan, J., Mitamura, T.: Knowledge-based extraction of named entities. In: Proceedings of the 4th International Conference on Information and Knowledege Management (CIKM 2002), November 1998, pp. 532–537 (1998)Google Scholar
  4. 4.
    Carey, M., Kriwaczek, F., Ruger, S.: A visualization interface for document searching and browsing. In: Proceedings of CIKM 2000 Workshop on New Paradigms in Information Visualization and Manipulation (2000)Google Scholar
  5. 5.
    Chen, J., Diekema, A.R., Taffet, M.D., McCracken, N., Ozgencil, N.E., Yilmazel, O., Liddy, E.D.: Question answering: CLNP at the TREC-10 question answering track. In: Proceedings of the 10th Text REtrieval Conference (TREC 2001), pp. 296–301 (2001)Google Scholar
  6. 6.
    Chu, H.: Information Representation and Retrieval in the Digital Age. Information Today Inc. (2003)Google Scholar
  7. 7.
    Dumais, S., Banko, M., Brill, E., Lin, J., Ng, A.: Web question answering: Is more always better? In: Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval (August 2002)Google Scholar
  8. 8.
    Estivill-Castro, V.: Why so many clustering algorithms - a position paper. SIGKDD Explorations 4(1), 65–75 (2002)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G., Ruppin, E.: Placing search in context: the concept revisited. In: Proceeding of the Tenth International World Wide Web Conference, pp. 406–414 (2001)Google Scholar
  10. 10.
    Fuller, M., Kaszkiel, M., Ng, C., Wu, M., Zobel, J., Kim, D., Robertson, J., Wilkinson, R.: Ad hoc, speech and interactive tracks at mds/csiro. In: Proceedings of the 7th Text REtrieval Conference (TREC-7), pp. 465–474 (1998)Google Scholar
  11. 11.
    Gruber, T.R.: A translation approach to portable ontology specifications. Knowledge Acquisition 5(2), 199–220 (1993)CrossRefGoogle Scholar
  12. 12.
    Halliday, M., Hasan, R.: Cohesion In English. Longman, Harlow (1976)Google Scholar
  13. 13.
    Kummamuru, K., Lotlikar, R., Roy, S., Singal, K., Krishnapuram, R.: A hierarchical monothetic document clustering algorithm for summarization and browsing search results. In: Proceedings of the 13th international conference on World Wide Web (WWW 2004), pp. 658–665 (2004)Google Scholar
  14. 14.
    Li, Y., Bandar, Z.A., McLean, D.: An approach for measuring semantic similarity between words using multiple information sources. IEEE Transactions on Knowledge and Data Engineering 15(4), 871–882 (2003)CrossRefGoogle Scholar
  15. 15.
    Albanese, A.P.M., Rinaldi, A.M.: A semantic search engine for web information retrieval: an approach based on dynamic semantic networks. In: Proceedings of SIGIR Semantic Web and Information Retrieval Workshop (SWIR 2004) (July 2004)Google Scholar
  16. 16.
    Mana-Lopez, M.J., De Buenaga, M., Gomez-Hidalgo, J.M.: Multidocument summarization: An added value to clustering in interactive retrieval. ACM Transactions on Information Systems 22(2), 215–241 (2004)CrossRefGoogle Scholar
  17. 17.
    Miller, G.A.: Wordnet: a lexical database for english. Communications of the ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  18. 18.
    Moldovan, D.I., Mihalcea, R.: Using WordNet and lexical operators to improve internet searches. IEEE Internet Computing 4(1), 34–43 (2000)CrossRefGoogle Scholar
  19. 19.
    Neches, R., Fikes, R., Finin, T., Gruber, T., Patil, R., Senator, T., Swartout, W.R.: Enabling technology for knowledge sharing. AI Magazine 12(3), 36–56 (1991)Google Scholar
  20. 20.
    Pantel, P., Lin, D.: Clustering: Document clustering with committees. In: Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval (Tampere), August 2002, pp. 199–206 (2002)Google Scholar
  21. 21.
    Paranjpe, D., Ramakrishnan, G., Srinivasan, S.: Passage scoring for question answering via bayesian inference on lexical relations. In: Proceedings of the 12th Text REtrieval Conference (TREC 2003), pp. 305–310 (2004)Google Scholar
  22. 22.
    Roussinov, D., Robles, J.: Web question answering through automatically learned patterns. In: Proceedings of the 4th ACM/IEEE-CS joint conference on Digital libraries, June 2004, pp. 347–348 (2004)Google Scholar
  23. 23.
    Salton, G., Buckley, C.: Improving retrieval performance by relevance feedback. Journal of the American Society for Information Science 41(4), 288–297 (1990)CrossRefGoogle Scholar
  24. 24.
    Shepard, R.N.: Towards a universal law of generalisation for psychological science. Science 237, 1317–1323 (1987)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Sheth, A., Bertram, C., Avant, D., Hammond, B., Kochut, K., Warke, Y.: Managing semantic content for the web. IEEE Internet Computing 6(4), 80–87 (2002)CrossRefGoogle Scholar
  26. 26.
    Stairmand, M.: A Computational Analysis of Lexical Cohesion with applications in Information Retrieval. PhD thesis, Centre for Computational Linguistics, UMIST, Manchester (1996)Google Scholar
  27. 27.
    Sumi, K., Sumi, Y., Mase, K., ichi Nakasuka, S., Hori, K.: Takealook: Personalizing information presentation according to user’s interest space. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SCM 1999), vol. 2, pp. 354–359 (1999)Google Scholar
  28. 28.
    Sussna, M.: Word sense disambiguation for free-text indexing using a massive semantic network. In: CIKM 1993: Proceedings of the second international conference on Information and knowledge management, pp. 67–74. ACM Press, New York (1993)CrossRefGoogle Scholar
  29. 29.
    Wang, P.-H., Wang, J.-Y., Lee, H.-M.: QueryFind: Search ranking based on users’feedback and expert’s agreement. In: Proceedings of the 2004 IEEE International Conference on e-Technology, e-Commerce and e-Service, EEE 2004 (2004)Google Scholar
  30. 30.
    Wu, M., Fuller, M., Wilkinson, R.: Using clustering and classification approaches in interactive retrieval. Inf. Proc. Manage 3, 459–484 (2001)CrossRefGoogle Scholar
  31. 31.
    Zamir, O., Etzioni, O.: Web document clustering: a feasibility demonstration. In: Proceedings of the 21st Annual International ACM/SIGIR Conference on Research and Developement in Information Retrieval, pp. 46–54 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Massimiliano Albanese
    • 1
  • Pasquale Capasso
    • 1
  • Antonio Picariello
    • 1
  • Antonio Maria Rinaldi
    • 1
  1. 1.Università di Napoli “Federico II”NapoliItaly

Personalised recommendations