Advertisement

A Native XML Database Supporting Approximate Match Search

  • Giuseppe Amato
  • Franca Debole
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3652)

Abstract

XML is becoming the standard representation format for metadata. Metadata for multimedia documents, as for instance MPEG-7, require approximate match search functionalities to be supported in addition to exact match search. As an example, consider image search performed by using MPEG-7 visual descriptors. It does not make sense to search for images that are exactly equal to a query image. Rather, images similar to a query image are more likely to be searched. We present the architecture of an XML search engine where special techniques are used to integrate approximate and exact match search functionalities.

Keywords

Multimedia Document Path Expression Approximate Match Path Index Match Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    ECD, Enhanced, Content, Delivery (2002), http://ecd.isti.cnr.it
  3. 3.
    XPath1.0 (1999), http://www.w3.org/tr/xpath
  4. 4.
    XQuery1.0 (2005), http://www.w3.org/tr/xquery
  5. 5.
    Amato, G., Debole, F., Rabitti, F., Savino, P., Zezula, P.: Signature-based approach for efficient relationship search on xml data collections. In: Bellahsène, Z., Milo, T., Rys, M., Suciu, D., Unland, R. (eds.) XSym 2004. LNCS, vol. 3186, pp. 82–96. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
  7. 7.
    Florescu, D., Kossmann, D.: Storing and querying xml data using an rdbms. IEEE Data Engineering Bulletin 22(3), 27–34 (1999)Google Scholar
  8. 8.
    Shanmugasundaram, J., Tufte, K., He, G., Zhang, C., DeWitt, D., Naughton, J.: Relational databases for querying xml documents:limitations and opportunities. In: Proceedings of the 25th VLDB Conference, Edinburgh, Scotland (1999)Google Scholar
  9. 9.
    Shimura, T., Yoshikawa, M., Uemura, S.: Storage and retrieval of xml documents using object-relational databases. In: Bench-Capon, T.J.M., Soda, G., Tjoa, A.M. (eds.) DEXA 1999. LNCS, vol. 1677, pp. 206–217. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Salton, G., McGill, M.: Introduction to Modern Information Retrieval. McGraw-Hill Book Company, New York (1984)Google Scholar
  12. 12.
  13. 13.
    Meier, W.: exist: An open source native xml database. In: Chaudhri, A.B., Jeckle, M., Rahm, E., Unland, R. (eds.) NODe-WS 2002. LNCS, vol. 2593, pp. 169–183. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Xindice, A.: (2001), http://xml.apache.org/xindice/
  15. 15.
    Carey, M.J., DeWitt, D.J., Franklin, M.J., Hall, N.E., McAuliffe, M.L., Naughton, J.F., Schuh, D.T., Solomon, M.H., Tan, C.K., Tsatalos, O.G., White, S.J., Zwilling, M.J.: Shoring up persistent applications, pp. 383–394 (1994)Google Scholar
  16. 16.
    Zhang, C., Naughton, J., DeWitt, D., Luo, Q., Lohman, G.: On supporting containment queries in relational database management systems. In: SIGMOD 2001: Proceedings of the 2001 ACM SIGMOD international conference on Management of data, pp. 425–436. ACM Press, New York (2001)CrossRefGoogle Scholar
  17. 17.
    Goldman, R., Widom, J.: Dataguides: Enabling query formulation and optimization in semistructured databases. In: Jarke, M., Carey, M.J., Dittrich, K.R., Lochovsky, F.H., Loucopoulos, P., Jeusfeld, M.A. (eds.) VLDB 1997, Proceedings of 23rd International Conference on Very Large Data Bases, pp. 436–445. Morgan Kaufmann, San Francisco (1997)Google Scholar
  18. 18.
    Chung, C.W., Min, J.K., Shim, K.: Apex: An adaptive path index for xml data. In: Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data, June 3-6. ACM Press, New York (2002)Google Scholar
  19. 19.
    Cooper, B., Sample, N., Franklin, M.J., Hjaltason, G.R., Shadmon, M.: A fast index for semistructured data. In: Apers, P.M.G., Atzeni, P., Ceri, S., Paraboschi, S., Ramamohanarao, K., Snodgrass, R.T. (eds.) VLDB 2001, Proceedings of 27th International Conference on Very Large Data Bases, Roma, Italy, September 11-14, pp. 341–350. Morgan Kaufmann, San Francisco (2001)Google Scholar
  20. 20.
    Amato, G., Debole, F., Zezula, P., Rabitti, F.: Yapi: Yet another path index for xml searching. In: Koch, T., Sølvberg, I.T. (eds.) ECDL 2003. LNCS, vol. 2769, pp. 176–187. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Amato, G., Debole, F., Zezula, P., Rabitti, F.: Tree signatures for xml querying and navigation. In: Bellahsène, Z., Chaudhri, A.B., Rahm, E., Rys, M., Unland, R. (eds.) XSym 2003. LNCS, vol. 2824, pp. 149–163. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    Fuhr, N., Großjohann, K.: XIRQL: An extension of XQL for information retrieval. In: ACM SIGIR Workshop On XML and Information Retrieval, Athens, Greece (2000)Google Scholar
  23. 23.
    Guha, S., Jagadish, H.V., Koudas, N., Srivastava, D., Yu, T.: Approximate xml joins. In: SIGMOD ’02: Proceedings of the 2002 ACM SIGMOD international conference on Management of data, pp. 287–298. ACM Press, New York (2002)CrossRefGoogle Scholar
  24. 24.
    Amato, G., Rabitti, F., Savino, P., Zezula, P.: Region proximity in metric spaces and its use for approximate similarity search. ACM Trans. Inf. Syst. 21, 192–227 (2003)CrossRefGoogle Scholar
  25. 25.
  26. 26.
    Zezula, P., Amato, G., Debole, F., Rabitti, F.: Tree Signatures for XML Querying and Navigation, pp. 149–163. Springer, Heidelberg (2003)Google Scholar
  27. 27.
  28. 28.
    Amato, G., Gennaro, C., Rabitti, F., Savino, P.: Milos: A multimedia content management system for digital library applications. In: Heery, R., Lyon, L. (eds.) ECDL 2004. LNCS, vol. 3232, pp. 14–25. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Giuseppe Amato
    • 1
  • Franca Debole
    • 1
  1. 1.PisaISTI – CNRItaly

Personalised recommendations